Lecture Note On

Microprocessor and
Microcontroller Theory and
Applications

Semester: 4th

Branch: ELECTRONICS AND
TELECOMMUNICATION

Syllabu
s

Department of Electrical Engineering,
Syllabus of Bachelor of Technology in Electrical Engineering, 2010

MICROPROCESSOR & MICRO CONTROLLER THEORY & APPLICATION (3-1-
0)

MODULE-I (10 HOURS)

Microprocessor Architecture: Introduction to Microprocessor and Microcomputer Architecture, Pins
& Signals, Register Organization, Timing & Control Module, 8083 Instruction Timing & Execution.
Instruction Set and Assembly Language Programming of 8085~ Instruction set of 8083, Memory &
VO Addressing, Assembly language programming using 8085 Instruction Set, Use of Stack &
Subroutines, Data transfer techniques, 8083 interrupts

MODULE-IT (10 HOURS)

Interfacing & support chips: Interfacing EPROM & RAM Memories, 2716, 2764, 6116 & 6264
Microprocessor Based System Development Aids, Programmable Peripheral Interface: 8235,
Programmable DMA Controller: 8257, Programmable Interrupt Coniroller: 8259
Application: Delay calculation, square wave generation, Interfacing of ADC & DAL, Data
Acquisition System,

MODULE-III (10 HOURS)

Advanced Microprocessor: Basic features of Advance Microprocessors, Intel 8086 (16 bit
processors):- 8086 Architecture, Register organization, signal descriptions, Physical Memory
Organization, Addressing Modes, Instruction Formats, Instructions Sets & Simple Assembly
language programmes, 8086 Interrupts.

Simple application: Delay calculation, square wave generation

MODULE-IV (10 HOURS)

Microcontroller:- Introduction for Microcontrollers, Microcontrollers & Microprocessors, Embedded
verses Extemnal Memory devices, CISC & RISC Processors, Havard & Von Neumann
Architectures, 8051 Microcontrollers. MCS-51 Architecture, Registers, Stack Pointer & Program
Counter. 8051 Pin Description, Connections, Parallel 10 ports, Memory Organization, 8051
Addressing Modes & Instructions, 8031 Assembly Language Programming Tools.

Simple application: Delay calculation, square wave generation, Imerfacing of LCD unit.

Disclaimer

This document does not claim any originality and cannot be used as a
substitute for prescribed textbooks. The information presented here is
merely a collection by the committee members for their respective
teaching assignments. Various sources as mentioned at the end of the
document as well as freely available material from internet were
consulted for preparing this document. The ownership of the
information lies with the respective authors or institutions. Further, this
document is not intended to be used for commercial purpose and the
committee members are not accountable for any issues, legal, or
otherwise, arising out of this document. The committee members make
no representations or warranties with respect to the accuracy or
completeness of the contents of this document and specially disclaim
any implied warranties of merchantability or fitness for a particular
purpose. The committee members shall not be liable for any loss or
profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

MODULE: 1
1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

A microprocessoris a programmable electronics chip that has computing and
decision making capabilities similar to central processing unit of a computer. Any
microprocessor- based systems having limited number of resources are called
microcomputers. Nowadays, microprocessor can be seen in almost all types of
electronics devices like mobile phones, printers, washing machines etc.
Microprocessors are also used in advanced applications like radars, satellites and
flights. Due to the rapid advancements in electronic industry and large scale
integration of devices results in a significant cost reduction and increase
application of microprocessors and their derivatives.

i A A A A A A A A T
Y L] L Data bus '
< B — »
v Y L) Control bus _Jl_'rﬁ_.
B
Address bus H
P T — =

Fig.1 Microprocessor-based system

e Bit: A bitis a single binary digit.

e Word: A word refers to the basic data size or bit size that can be processed by
the arithmetic and logic unit of the processor. A 16-bit binary number is
called a word in a 16-bit processor.

e Bus: A busisa group of wires/lines that carry similar information.

e System Bus: The system bus is a group of wires/lines used for
communication between the microprocessor and peripherals.

e Memory Word: The number of bits that can be stored in a register or memory
element is called a memory word.

e Address Bus: It carries the address, which is a unique binary pattern used to
identify a memory location or an I/0 port. For example, an eight bit address
bus has eight lines and thus it can address 28 = 256 different locations. The
locations in hexadecimal format can be written as 00H - FFH.

o Data Bus: The data bus is used to transfer data between memory and
processor or between 1/0 device and processor. For example, an 8-bit
processor will generally have an 8-bit data bus and a 16-bit processor will
have 16-bit data bus.

e Control Bus: The control bus carry control signals, which consists of signals
for selection of memory or I/0 device from the given address, direction of
data transfer and synchronization of data transfer in case of slow devices.

A typical microprocessor consists of arithmetic and logic unit (ALU) in association
with control unit to process the instruction execution. Almost all the
microprocessors are based on the principle of store-program concept. In store-
program concept, programs or instructions are sequentially stored in the memory
locations that are to be executed. To do any task using a microprocessor, it is to
be programmed by the user. So the programmer must have idea about its internal
resources, features and supported instructions. Each microprocessor has a set of
instructions, a list which is provided by the microprocessor manufacturer. The
instruction set of a microprocessor is provided in two forms: binary machine code
and mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of
instructions in the form of binary patterns is called a machine language and it is
difficult for us to understand. Therefore, the binary patterns are given abbreviated
names, called mnemonics, which forms the assembly language. The conversion
of assembly-level language into binary machine-level language is done by using
an application called assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

e Transistor-Transistor Logic (TTL)
e Emitter Coupled Logic (ECL)
e Complementary Metal-Oxide Semiconductor (CMOS)

Classification of Microprocessors:

Based on their specification, application and architecture microprocessors are
classified.

Based on size of data bus:

e 4-bit microprocessor
e 8-bit microprocessor
e 16-bit microprocessor
e 32-bit microprocessor

Based on application:

e General-purpose microprocessor- used in general computer system and can
be used by programmer for any application. Examples, 8085 to Intel
Pentium.

e Microcontroller- microprocessor with built-in memory and ports and can be
programmed for any generic control application. Example, 8051.

e Special-purpose processors- designed to handle special functions required
for an application. Examples, digital signal processors and application-
specific integrated circuit (ASIC) chips.

Based on architecture:

e Reduced Instruction Set Computer (RISC) processors
e Complex Instruction Set Computer (CISC) processors

2. 8085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package
and uses +5 V for power. It can run at a maximum frequency of 3 MHz. Its data
bus width is 8-bit and address bus width is 16-bit, thus it can address 216 = 64 KB
of memory. The internal architecture of 8085 is shown is Fig. 2.

RES

L T EEM T ¥

T

SERLAL 1) & CONTROL

INTERRLUFT 0N TROL

B EIT INTERNAL
1L F=ri el 11
| ' |
[[¥ il
[! 1]
T T Ty .
ACCIAI- 1] 'ﬁl"gflré;":' - MULTIFLXER
LATOR TEMP REG AR e -
(1 R =
& E TEMF. BEG
—= [BREG{§} T REGTLED
"-,, r % DEREG (B EREG (&)
E
IS TROCTIO HREG (8] r
L n DECODER o~id | T ——_| _LREG4A)
LI UHIT | AL jl MACHDNE E STACK POINTER (L6}
B L] - EXCODING 7 | FROGCRAM COUNTER(16)
_Ei:'- el r L] TFCHERNIERT m.j.‘mvmn—f II
T |I ||
! ; | |
Ky TIMING AN CONTROL Z i
:,]EE ATDRESS BUFFER | DATA | ATDRESS
-":-" CONTROL .\T T[L-:u;. " BUFFER {5}
TN =
R.E"-E'.I'I .\.ur'.\..!' H
READY RDWE ALE ™ ¥ 10/ BOLDHLDA gesprour ADDRESS BUS A - AB{ ADDRESS

Fig. 2 Internal Architecture of 8085
Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition
(ADD), Subtraction (SUB), AND, OR etc. It uses data from memory and from
Accumulator to perform operations. The results of the arithmetic and logical
operations are stored in the accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown
in Fig. 3. In addition, it has two 16-bit registers: stack pointer and program counter.
They are briefly described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified
as B,C, D, E,H and L. they can be combined as register pairs - BC, DE and HL to
perform some

16-bit operations. The programmer can use these registers to store or copy data
into the register by using data copy instructions.

AL LI ATCIE A Su
ALCTLMLLALCRE A PEATE BIEIT

TS 5] [1®
b 1) L (#)
{E2 T #1
Srack Polnter (5P 1)
Progmrarn Conniler ¢ 1 (161)
Lhana L Suddaeps Doy
2 Lin=s Didiracticnal la Linss unidiractional

Fig. 3 Register
organisation

Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to
store 8-bit data and to perform arithmetic and logical operations. The result of an
operation is stored in the accumulator. The accumulator is also identified as
register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according
to data condition of the result in the accumulator and other registers. They are
called Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their
bit positions in the flag register are shown in Fig. 4. The microprocessor uses
these flags to test data conditions.

I Ea T M- ¥ T I I

]) il I (I
Fig. 4 Flag register

For example, after an addition of two numbers, if the result in the accumulator is
larger than 8-bit, the flip-flop uses to indicate a carry by setting CY flag to 1. When
an arithmetic operation results in zero, Z flag is set to 1. The S flag is just a copy
of the bit D7 of the accumulator. A negative number hasa 1in bitD7 and a
positive number has a 0 in 2's complement representation. The AC flag is set to 1,
when a carry result from bit D3 and passes to bit D4. The P flag is set to 1, when
the result in accumulator contains even number of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register
isa memory pointer. The microprocessor uses this register to sequence the
execution of the instructions. The function of the program counter is to point to the
memory address from which the next byte is to be fetched. When a byte is being
fetched, the program counter is automatically incremented by one to point to the
next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a
memory location in R/W memory, called stack. The beginning of the stack is
defined by loading 16- bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program.
Latest instruction sent here from memory prior to execution. Decoder then takes
instruction and decodes or interprets the instruction. Decoded instruction then
passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor
to carry out the instruction, which has been decoded. Typical buses and their
timing are described as follows:

e Data Bus. Data bus carries data in binary form between microprocessor and
other external units such as memory. It is used to transmit data i.e.
information, results of arithmetic etc between memory and the
microprocessor. Data bus is bidirectional in nature. The data bus width of
8085 microprocessor is 8-bit i.e. 286 combination of binary digits and are
typically identified as DO — D7. Thus size of the data bus determines what
arithmetic can be done. If only 8-bit wide then largest numberis 11111111
(255 in decimal). Therefore, larger numbers have to be broken down into
chunks of 255. This slows microprocessor.

e Address Bus: The address bus carries addresses and is one way bus from
microprocessor to the memory or other devices. 8085 microprocessor
contain 16-bit address bus and are generally identified as A0 - A15. The
higher order address lines (A8 — A15) are unidirectional and the lower order
lines (AO — A7) are multiplexed (time-shared) with the eight data bits (DO -
D7) and hence, they are bidirectional.

e Control Bus: Control bus are various lines which have specific functions for
coordinating and controlling microprocessor operations. The control bus
carries control signals partly unidirectional and partly bidirectional. The
following control and status signals are used by 8085 processor:

I. ALE (output): Address Latch Enable is a pulse that is provided when an
address appears on the ADO — AD7 lines, after which it becomes 0.

Il. RD (active low output): The Read signal indicates that data are being
read from the selected I/0 or memory device and that they are
available on the data bus.

. WR(active low output): The Write signal indicates that data on the
data bus are to be written into a selected memory or I/0 location.

V. 10/™(output): It is a signal that distinguished between a memory
operation and an I/O operatien. When I0/M = 0 itisa memory —
operation and 1I0/M = 1 itis an I/O operation.

V. S1and SO (output): These are status signals used to specify the type
of operation being performed; they are listed in Table 1.

Table 1 Status signals and associated

operations

ST SO States
0 0 Halt
0 1 Write
1 0 Read
1 1 Fetch

The schematic representation of the 8085 bus structure is as shown in Fig. 5. The
microprocessor performs primarily four operations:

I. Memory Read: Reads data (or instruction) from memory.
ll. Memory Write: Writes data (or instruction) into memory.
ll. 1/0 Read: Accepts data from input device.
V. 1/0 Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and
control bus as shown in Fig. 5.

A
. i Address Bus
Ag

MPL ‘
g‘:<*_hII_DM“JL ||_§

— Conirol Bus

Fig. 5 The 8085 bus
structure

3. 8085 PIN DESCRIPTION

Properties:

W

It is a 8-bit microprocessor

Manufactured with N-MOS technology

40 pin IC package

It has 16-bit address bus and thus has 216 = 64 KB addressing capability.
Operate with 3 MHz single-phase clock

+5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in
Fig. 6. All the signals are classified into six groups:

Address bus

Data bus

Control & status signals

Power supply and frequency signals
Externally initiated signals

Serial I/0 signals

Xy « 1 il L T
X 4 = 11 B B 1144
EESE orT 4 1 15 E BT
Sprial i .. I E . e I | 41— s ——
Fal N LN S R T L] & -
e —l::-:ll:- *+—] s T e
A 4 1 —* neam =
porae 4—] 2 N IR
Burse 4—| 4 I E
CINIEE R RIRS A T — i
WIH - L
oy SR B . ;
Ay A 1 b
" LN
: L m = L
A 1y n i
A,] s % . L
Al g— 14 m
Al 4—1 | —
ill, 44— |3 1y s
FTT e BT T s
v —La —

Fig. 6 8085 microprocessor pin layout and signal groups

Address and Data Buses:

A8 - A15 (output, 3-state): Most significant eight bits of memory addresses
and the eight bits of the I/0 addresses. These lines enter into tri-state high
impedance state during HOLD and HALT modes.

ADO - AD7 (input/output, 3-state): Lower significant bits of memory
addresses and the eight bits of the I/0 addresses during first clock cycle.
Behaves as data bus

during third and fourth clock cycle. These lines enter into tri-state high
impedance state during HOLD and HALT modes.

Control & Status Signals:

e ALE: Address latch enable

e RD Read control signal.

e WR: Write control signal.

e |0/M,S1 and SO : Status signals.

Power Supply & Clock Frequency:

e Vcc: +5V power supply

e Vss: Ground reference

e X1, X2: A crystal having frequency of 6 MHz is connected at these two pins
e CLK: Clock output

Externally Initiated and Interrupt Signals:

e RESET IN - When the signal on this pin is low, the PC is set to 0, the buses
are tri- stated and the processor is reset.

e RESET OUT: This signal indicates that the processor is being reset. The
signal can be used to reset other devices.

e READY: When this signal is low, the processor waits for an integral number
of clock cycles until it goes high.

e HOLD: This signal indicates that a peripheral like DMA (direct memory
access) controller is requesting the use of address and data bus.

e HLDA: This signal acknowledges the HOLD request.

e INTR: Interrupt request is a general-purpose interrupt.

* INTA: Thisis used to acknowledge an interrupt.

e RST 7.5,RST 6.5, RST 5,5 — restart interrupt: These are vectored interrupts
and have highest priority than INTR interrupt.

e TRAP: This is a non-maskable interrupt and has the highest priority.
Serial I/0 Signals:

e SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using
RIM instruction.

SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

= e

4. INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU and decoding unit, the microprocessor
manufacturer provides instruction set for every microprocessor. The instruction
set consists of both machine code and mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a
specific function. The entire group of instructions that a microprocessor supports
is called instruction set. Microprocessor instructions can be classified based on
the parameters such functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from
source to destination. The content of the source is not altered.

ll. Arithmetic operations: Instructions of this group perform operations like
addition, subtraction, increment & decrement. One of the data used in
arithmetic operation is stored in accumulator and the result is also stored

. inaccumulator.

Logical operations: Logical operations include AND, OR, EXOR, NOT. The
operations like AND, OR and EXOR uses two operands, one is stored in
accumulator and other can be any register or memory location. The result is
stored in accumulator. NOT operation requires single operand, which is
stored in accumulator.

IV. Branching operations: Instructions in this group can be used to transfer
program
sequence from one memory location to another either
conditionally or unconditionally.

V. Machine control operationS' Instruction in this group control execution of

Classiﬁ)égﬁ Sgréjec}'on eng hontrol operations like interrupt, halt etc.
I. One-byteinstructions: Instruction having one byte in machine code.
Examples are depicted in Table 2.

I. Two-byte instructions: Instruction having two byte in machine code.

Examples are depicted in Table 3
[l. Three-byte instructions: Instruction having three byte in machine code.
Examples

are depicted in Table 4.

Table 2 Examples of one byte instructions
Opcode Operand Machine code/Hex code
MOV A B 78
ADD M 86

Table 3 Examples of two byte

Opcode Ope'rnasﬁr P Machine code/Hex Byte description
code
MVI A, 7FH 3E First byte
7F Second byte
ADI OFH Cé6 First byte
OF Second byte

Table 4 Examples of three byte

Opcode Ope'Pas'HaCIoni/Iachine code/Hex | Byte description
code

JMP 9050H C3 First byte
50 Second byte
90 Third byte

LDA 8850H 3A First byte
50 Second byte
88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called
addressing. The various formats for specifying operands are called addressing
modes. The 8085 has the following five types of addressing:

I. Immediate addressing

[l. Memory direct addressing
. Register direct addressing
V. Indirect addressing

V. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word - transfers to
the destination register or memory location.

Ex: MVI A, 9AH

e Theoperand is a part of the instruction.
e Theoperand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and
register. The memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the
accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to
destination register.

Ex: MOV B, C

It copies the content of register C to register B. Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory
location. Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The
data is moved to the accumulator.

Implicit Addressing
In this addressing mode the data itself specifies the data to be operated upon. Ex:

CMA

The instruction complements the content of the accumulator. No specific data or
operand is mentioned in the instruction.

5. INSTRUCTION SET OF 8085

Data Transfer Instructions:

[—— Craerarad | Fwrvemi o L
1 e selnnism
IE. I.- o -I-.hl-.l;: :H'\- o " I hea sl pem Ll on commtens |l wean CELE S [N R [T RN PR L s .
: L% I P VagiETIs i ar Lherc e i v dwm The coe LTEPRNT |
<1 :-i. I frsbis e pegasien s ceal pHET b 11 ami ol dhiy s annld i &

frrcTrreers lirsalineii, D3e s S it L e i LU LL LI

Pihm lal. EcpgratimT

T=romp=le W D, 0T e RANTE T D

Lt} .= i Pty
.':.-'- 7 lTLL:JI|7||I|| I I e Ok oo s e sed b pkes sfeesdndabeoil SOyt . , .
; | -\J"r e v TF B oygmemnns & S alectnery leecabinil. s fesseieaan ar
T SFret 1= PoU LI DN BTV T} £ b il ohe Ll '\.|I C) Dl o
[EESTTRTT] EEH S R B Sy wEWD R

1 el asauiil vl - . pard Foareli air 3

I i1l 1] 1T cammimnle ool 0 meormeery hieadeeed, 5= - - .

L1 Iorinl ackirsd | ee=rle @d v o Vha agparaesd wm wapiesdd T ibe aaaailLinT e
1 e aw ke wf vhe s e e e alires |

I.-\..|.'II|"-|" 13 ek pe D0 S0 -

:.il'ilf:::l:.ulllluljl_'l.i:il -.IJ|:;|? 3 [T -.....'.-.'.I'\- i i chem s aney] Tenardam sl peamt i e kit

| PR This Drreininn wuiias 2y evmimnis EST g =] I'lI-'II'I-|'\.-
e PR LT TIEL] T I ire etz s esl sl LGOS
- fan I'--;' ca Eme mreenrnn v [O=Carson e e aleacd.

rcE
I "‘-""-"l'l' 1 EEL = B |

.; ":\-':"I"-. "-r"“'; L .'\.-"r."lll:::dl- :: |:_II.' Vi nirErgesies hinols | iin pariar 1 shie b i I"III
-ER- T e oz

<1 i amd n 3
Foroannipder TR H TRRsS

Lol 3T a=d | “.I.I-I:-'II _-||__|-\._-._-r Feis arerdrucliom et e oedpe - oarl Dhed GSalimesrts (ORI S]
LLIL1* 1 iemLnin et e -"__"In\.._l i 1y ez [0-Tir anlibwer likss peeeralm durd copam
:.___ e T T = B L e S L T e ard manne BREE LT st e H. The
SdisrerEl e ol rmanes icTeee lie lie Tieca, s llmidedd.
Pumooopde s LD IS PL-158

Store accumulator direct

STA 16-bit address The contents of the accumulator are copied into the memory
location specified by the operand. This i1s a 3-byte
instruction, the second byte specifies the low-order address
and the third byte specifies the high-order address.
Example: STA 4350 or STA XYZ

Store accumulator indirect
STAX Reg. pair The contents of the accumulator are copied into the memory
location specified by the contents of the operand (register

pair). The contents of the accumulator are not altered.
Example: STAX B

Store H and L registers direct

SHLD 16-bnt address The contents of register L are stored into the memory location
specified by the 16-bit address in the operand and the contents
of H register are stored into the next memory location by
incrementing the operand. The contents of registers HL are
not altered. This 1s a 3-byte instruction, the second byte
specifies the low-order address and the third byte specities the
high-order address.
Example: SHLD 2470

Exchange Hand L with D and E
XCHG none The contents of register H are exchanged with the contents of
register D, and the contents of register L are exchanged with

the contents of register E.
Example: XCHG

Copy H and L registers to the stack pointer

SPHL none The instruction loads the contents of the H and L registers
mto the stack pointer register, the contents of the H register
provide the high-order address and the contents of the L
register provide the low-order address. The contents of the H
and L registers are not altered.

Example: SPHL

Exchange H and L with top of stack

XTHL none The contents of the L register are exchanged with the stack
location pointed out by the contents of the stack pointer
register. The contents of the H register are exchanged with
the next stack location (SP+1); however, the contents of the

stack pointer register are not altered.
Example: XTHL

Piish re@enar fuln calbo stack

L HMep. pair The comimi= of tha regisior pair de=iproicd in the oporend mre
sl ormba dhe siealy 0 ithe I:u"uu.-rr‘ el L DL Ih wiawk
p.mu..r regiatar a deordmaiiled ared e comaiile o the Bagli-
oider regi=wer (DR R DL A0 o coplied imo th locsion. Tha
sack pomnicr regisier = decremerried pgoin and ibe cormienis of
[ST TR IHH:'I'I-'I I_'I'. | B ILlH-lh s L-l.-qru.-] I i
Bms Sl
Exmergpds: PUSH 1 pr PUSH A

Py ol smacl b paglatar pair

1M HMep. pair The coniomes= ol 1the oy ecaison poamicd] ol by the sisck
PeEnler regisier are eopaed bs i loreesonder epivker (0 B L.
=Ll ﬂq.ll._l ol mhea ||-|||.—L Thie s1ack FL e ST T e |
By 1 o whes commiomts o shoil iy boec sohcan e o] mo
b high-order register (15 15 FL G40 ol dhe oporamd. T sk
r-ull.rrr r-l-|.| arrn —Jrl.llllrul-lh-l.

wnmngda: PO Moo PO A

£ hulprand slalar Teoom aesaumnlafew i & e s Aol aslalress

[=Tl praenl e s Thie comilons oof T Gociimiiilatos s -\.||l||:|.-|j niile thie Las e
Epeciflodl by the ofrarmred
Empergple: LILIE ET

InpEin ilaism v socumilssyr from 8 pom vwith 850 adidress

I Hebai paori ablrees The pemdenis ol ihe mppoi port desiproicd i the operorsl e
rewnad arad Drvaakesl wren Dl sl atee

Ermmnpda: [N A2

Arithmetic
Instructions:
Opoosiy Ohperaamd Fe=cription
MAdd register or memory o scommalnior
AT R Tl eomiemals of The pperaml (regrler O memaory) ans
LUS added 1o dhe coments of the scosmloior and the resultl is

storedd in the accwmsliior. I the opeoramd is & memsory
locotion, ils boscalsoey os specilbed by the comenis of the HL
megisters. All flags are modhfied 10 raflect the ressls of the
addinen.

Example: ADIIFB or AL R

Add register ve seounmulaior with canry
ATHT R Tl comlemi: of The operamd (Freerisr o mcmeey s and
LT the Coarry flag eee added be the conemes of the accummmlaies
and the resslt is stored in e secumulsor. IF the operand i=a
aretilory boscaleoes irs Doscalsosk im spoecified by the conlests of

the HL regrsser=. A Taps are modiBed 1o reflest ihe result of
the oeldinioen

Example: Al Bor Al B

Add imumedhaie o accunmulaior

AT SE-hin dana The Bt data fagsroely s ablad w0 the cmntenis ol o
accumulabor and dhe result is stored ws the scomrelsaior. Aldl
TEags ars sl Pl b e Ut The resull of Phe sslidileon.
Example: Aalil 2%

Al iremedhale W accuwmalater wath carry

A E=hit dana The E-hit daia (operand) and the Canry flag are added 1o the
wonlenby 0l the scomulatbor sl The pesvull @ sdorad n O
accurmulator., ATl fags are modified to redlect the resuh of the

addhilas.
Example: ACL 45
sdd register par bs M and L regesters
[EEN B Feg. pair The L6-ta oonbems of the specilied register pair are sdded o

The conlénts of The HL regisler and The sim 15 elimsid i he
HL megisier. The coniemts of e source register par are niol
altercd. 10 the resall e largsy thass 16 Tals, the O Tlag 18 sl
N other flags are affecied

Example THATFH

Subtract register or memory from accumulator
SUB R The contents of the operand (register or memory) are
M subtracted from the contents of the accumulator, and the

result is stored in the accumulator. If the operand s a
memory location, its location is specified by the contents of
the HL registers. All flags are modified to reflect the result of
the subtraction,
Example: SUBB or SUBM

Subtract source and borrow from accumulator
SBB R The contents of the operand (register or memory) and
M the Borrow flag are subtracted from the contents of the
accumulator and the result 15 placed m the accumulator. If
the operand 15 @ memory location, its location is specified by
the contents of the HL registers. All flags are modified to

reflect the result of the subtraction.
Example: SBB B or SBBM

Subtract immediate from accumulator

SUI 8-bit data The 8-bit data (operand) 1s subtracted from the contents of the
aceumulator and the result is stored in the accumulator, All
flags are modified to reflect the result of the subtraction,
Example: SUT 435

Subtract immediate from accumulator with borrow

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted
from the contents of the accumulator and the result 1s stored
i the accumulator, All flags are modified to reflect the result
of the subtracion,
Example: SBI 45

Increment register or memory by 1
INR R The contents of the designated register or memory) are
M incremented by 1 and the result is stored in the same place. If
the operand is a memory location, its location is specified by
the contents of the HL registers.
Example: INRB or INR M

Increment regaster pair by |

INX R The contents of the designated register pair are incremented
by 1 and the result is stored in the same place.
Example: INXH

Decrement regizter or memery by 1

R k
M

Cecramemt register pair by I
K

L

Dhecyriin] salyjiisd o Cumsialalior

L B

ERANCHING TNSTRUCTIONS

Opande Chperand

Jump unsonditionally
e 16t adidress

Juirgr itk mlly

Operamd: 16-bnl idkdres

Cipcinke

Ir”
1F
I
15
Id
IFE
1M

The: contests of 1he desagmaied regisier of meory ane
skisremwnied by | and the resslt 1= stored in thw samw plass. [T
thee opeerand is @ meemony location, s lecation = specified by
ihe contems of tee HL regisiers.

FErample THR B or THE M

The: coments of the designated register panr e decremented
b || and the resuli is stored in the sseoe placs.
Example: ITH"X H

The: contemes of the accumulator are changed fromn a hinary
value Lo O d-bal Ty coddedl decimal (BT dhigats, Tl 1=
the caly sretmuction thet mses the suxilsary Mag e perfoone the
bimary w0 BCD comversion. and the comeersion procedurs is
dbeseribed beelow. 5, £, A, P, CY flags are aliesesd 10 redlect
ihw resuli= of the operaticm

If ithe vabse of the ow-order 2-bits m the socummulaior is
Eraley tham % o 1F AL Hlag s sel, Bhe inslrechion skl & Lo e
boroc=ordier Somer bl

If dhe walue of dhe high-order 4-bitx in the accumulator is
Ercaley e T ar ol thee Camry 1Bag e wid, 1he mretructim adds 6
w0 1he highsorder Tour buts.

Example THAA

Diesrplsm

The progrem sequence is ransterred w e semony location
spwcified by the 6-hit address given in the operomd.
Exsmnple: IMF 2034 or JMP XY E

The progrm sequence 1= iransferred to the memory location
specified by the Li=<bil pddres given i the opennd hased on

w2 Fptl':il-ld.d flag of the PS'W as describad belome,
Frampde: IE 2034 or IF XYE

Disrnpdxe Flag Sians
Jump on Carry =1
Tump on ma Cary Oy =0
Tump on pesttive 5=
Jump on minus =1
Tump on zeo £=1
Jump on o 2ern L =1
Tump on pariy even P=1
Jump on parity odd F=10

Uneemdibomal subrouiing call
Call Bi=hit midress

Calll gomhitionallh

Cipsrand: | 6G-kat address

T
s
[
P
™
o
M

LFE
CPr

Dhe=cription
Call mn.LFI'."u:d'r:.'
Call onono Cary
Call o posihse
Call o minus
Call e Fera
Call o no wero

Call e pamily cven
Call oo pasicy odd

The: program seqoence = massderned to the memory localion
mpecified by the I6-hil address ginen in the operand. Befors
the wremeder, tdie sddress of the men insireeioea after CALL
jthe conients of ithe program commeer] is pushed omio the siock.
Exampls CALL 004 am CALL XYE

The program =sequense = ramsfored o the memany localion
apaalied by the 16l adkbess given m The ageeramd bassd oan
the specificd flag of dhe PEW as desenbed below. Before dee
Tramaler, the sldras ol the nexl instnaction alber the cll {Fhe
comes of the prograes conmeer) is pushed omo the simek.
Example: ©OF 203 or UF XYL

Flag Statn=
%=1
CY =41

o by By DA A
EuHrunen
=y -

Reiurm from =sbrovting unsendilionally

RET e

The peogram sequeses s ogefeered froon dee sobrouline o
tha callimg program. The two byvtes from the top of the stack
are copicd wro e program counter, and program Sxecmion
begins ai the mew address

Exmrgple: FET

Baturm from sebromting conditiomally

Uypwrand: nomw

gﬁgﬁg%gﬁﬁ

Dhr=serpdaom
Eture on Cairy

The program sequimes i= mworsfomed from the subrouting o
e calling progrien Bassl on the specalied ag of the FSW as
deseribed belom:. The two byies foom the dop ol dwe siock ane
wigmisal aoka e progrm cosmsber., daad program esscutim
begins al the ssew addnees

Exmpla: FE

Eeium on no O ary Y =0

Fehim en posihis e
Beatum on minus

Fetum on Fers

Beium o0 no sene

Fetum on panly

Eezture on pasivy odd

B S

Eien

b-b -l B

Ll paows roem gponunrmey weiely HIL copniones

[AN (LB The comanus of registers T predl L ore cogdadl imo the progrmm
o, The costarms of Bl e plecod @ gk I-u-ll-r-r.].:ri::\-:.-h.l
prwed Tk codibaras o0 L 6= tha o =pad o B,
i gl PEHIL.

Hasimri
=T kT The BHST insmrwsgion is oqgpeaalony e g l-byie gpll dmsmsacrion
s g of gl mcimaery Becsnons dopendmg upaon the numibar.
The insmsecticons o peneorsllby o=l i comnotion e
e rripiE Rkl inscined using extaminl Teardy s [ST R
i ik Ted el o solimors sl lesis an & picge s e
ol e P eseauinm b smse ol ihe mipghi beaineas |
stililre s are
Prssmru o b osim Address

L Cuiaf |

BT 0 g

R [ELTRIIE

BT 3 ARl

HET 4 EREHT

H=T ™ CREIHIT

MET CaEAE

LLE rakARE
The S0mE figs fodr @dditiodnd imermepas ol thasa inemiagpes
FIET L ET I e (L0 YRS P IS :IIl'III.Il.l. TS = e PP | W e
sanny o iwwnal Teandbe s Ihsarswa anesivoreimmses ool Sheanr Hedars
ke s e

[TRl Wommim Address

TRAL Cuk Al

BT 23 a2 CRE

EC R [EUEETE

B=T TS5 CREAERE

LAVGHCAL INSTRIUCTIONS
sl Chperarud Drescripiiom

Compars rllﬁi!-l-:l'l:lrml:lr_'."ﬁ'ilh aeumulaior
P The coniests of the opera [Tegmeier of ey) ane
i sompared with the comtenis of the ascumulator. Hoth

coplenls are pressrived | The resall ol he aRnpanson s
shoran by =eiting the flags of the PSYW o= follows:
aCEAR = frep memk Gy Mlag s s, 5=1
if (A = (reg memnk: oero flag s i, s=
AU Ak = e mésnk ey sl Fene Tlags s messt, 5=TF
Example CMPE oe OB M

Canpare lndisediate wwth aocusvalalon

M Sehit dana The secomd buee (S-dbin daiap is compared wath the comsenis of
The seccismiiilator. The wvaluss bemeg <mmparsd rédenm
mchanged. The result of the oomparison = shown by setting
tThe Mags ol the FEW as Falloas
i (A = dotac carmy flag is sen, ==
iFCAF = dhlac raro Tlag 1= s, s=i0
iF (A = dala: carmy el Pero flags ane reser, s=i0
Example: CF1 29

Lr.:.&.i.l;:.l.ﬁ.ﬁl]:ll regiser or memory with sccumuolaor
AN K The conleats of the pecmsulaior ane lngically ANDed ok
M the contemes of the operand (register or memoryl, and the

mesuh ax placed in e asccinmsiilator, I the opscraml = a
anEiiary ket ils sddress s specified by the comeils of
HL regrsters. 5, £, P are modibed 5o eflect the resoli of ghe
opeeralion. LY o sesel AL iE &2l
Example: ARA B or ARA B

Legical AN imumediate with scomralalor

AT S=bhir dlata T comicmbs of the sccgmelaor arc Iogically ANDed wath the
E-bit 4datan (operand]l and the resah i= placed in the
accumulater. 5. £ P are medified o mellect the resmlt of the
opeeralion. UY s sesel AL is el
Example: AR B6

Exelusive OR regisier or memory with sscumulstor

MRA K The conteats of the pecunuloior are Exclusive ORed with
M the sontemts of the operand (register or memary)l, and e
resaht s pliced in e o r. I the operand is o

memory location. iis address is specified by the comenis of
HL regeers. 5, £, P e oundilied s orelledd the resoll of e
operation. OY and AC are reset.

Example: XEA B or XRA M

Exslusive OR immedsle nith seopmulaior

¥Hl Habiit desta The contenes of the pecuinuloior are Excleave ORal with dee
fhit dhia (operandl and the resuli = pheed in e
aceumulater, 8, 2L Foare mesdlicd be pellect the resall of e
operation. Y and AC are reset.
Eximpls XEI &5

Logical OR register or mamorny with accumulactr
ORA R The contesrs of the pecssulator are logically ORed wik
htl the sontemts of i ramd Cragister or memoryi, and e

fesahl s pliced in r-:-.'ﬂmﬁmr. If e operand s a
memory location ils address is specified by the coments of
HL regeters. 5, £, P ame minlifial g refled the resull of the
operation. Y and AC are reset.
Example: ORA B or (RA M

Lomgrcal OR immediate weth scomnelator

] S-hit data The comssmiz of the asgumulator are logially ORed with fhw
Bt i jopermd] aed the mevall x placs] i o
accumulaber. S, £ P are modified o reflect the resah of dhe
aperion. T anel AC ane rescl.
Example: ORI £6

Rvtaty ascumulator left
RLL Bl Fach binsy bit of the sceumulmor = rotmed lefl by ome

poation. Bt D7 is placed m the position of Dyy as well 2= in
the Camry flag. OV i= madified secording 1o bit 1, S 2. P,
AL are el Al ned

Example: RLC

Rimare aceumulatce right

KT malE EFach Wimary hit af the accumuolater is rolated ripht ko ome
posation. Bt [15 placed s the posstion of D os well &= in
the Carey flag. CY is moodifted sccording 1o bit Dy 5, 20 P,
AL are nod affecied
Example: RRC

Besate aceumulator lefi throssgh canry

Bal e

Emch binary bi of fe accumulacs is rotlared ket by oone
positiom thevugh the Canry flag. Bt O s plased in the Cary
flag. and the Carry flag i= placed in the o= signibeant
positso [, O e seodefied oeooeding 1o ba D 5.5, P, A
are ot affecied.
Essmnpls: FAL

Besate aceummlator right Seouph carme

Ak e

Compdemmt ek bor
kLA, nims

Comrgpdemnenil carry
LT none

Set Canry
5T

LLLA L

CONTROL, INSTRUCTHINS

e Chperaud
Mz
b (] Sl

Hall sl enfier winl slais
HLT L

Dasahle mbemmupis
1] B

Emable intemmupis
El LT

Emch besary hit of the aoconmiliter = ootated righe by one
posiiom through the Camry flag. Bat D ois placed in the Camy
flag. and ithe Camy fag is placod in the mos significans
posimom 7. % w sodefied seooeding 1o b Do S5, 5, P, A
are nod affected.
Exmmple: AR

The comienils ol the accumulae are Soanplemenied. WMo flags
are adfecued.
Ermmrgds: CTlA

The Carry flag is crespdemented. ™o other (lags are adfeced.
Exmmpda: Chilr”

The Carry Mlag e et W 1 Mo ather Tlags ane aflTiecned
Example: STC

Drescripliom

Mo operotion s performed. The msuctsom is fesched and
decoded However no operation s execmed.
Exampls: ™OP

The CPLT finishes execuiing ihe owrmeni instruction and halis
any Perther sxesuiion. An inlamept o meset 0= Teewssary o
exil froms e halt sioe.

Example: HLT

The mlerrupl érable Php-Thop = pesstl amwd &l the imlemuapls
exoepl the TRAP are dissbled. o flags are affecied
Exsmnple: T

The imierrgpt enable ffpetflop s ser and all aernepes are
anabled. Mo fags are alfecied. Afier a syetem resst or ghe
ackneyledgenseent of an wwerrupl, the amernept enabdes flip=
Moy is reseri. s dimbling the mbermupis. This instroctson is
mecewairy W recnadslle the mlermipls {excaged TRAF.

Example: EI

Read mbermup! mark:

RIM

e

This is o smuhipurpoese stucton wed 1o read the stas of

miwrmupts 7.5 6.5 55 ad read sl data inpui ket The
setuction bads el bets in the occesulator with e

following imierpretations.
Exnmrgple: Rl

P O b O P O ¥ P I =
(S0 [1 [16 | 15 [IE |73 [6A]58
L ! L_1l_l
E-:l'i:"l'q:lll‘J Iniemgn
bt ber sk i
k=1
Inicrmust Ireerrapt cratle
peradig if Rip-flig b e
b= | i = |

Sat méwrrupt mask

s

ilone

This is a mohipirpose instrecion and used o implement the
R85 imerrapi= 7.5, 6.5 5.5, and serial data outpul. The
srdUctin erprets the secumuloor comtents &= follows

Examogple: 51M

EﬂmeJ

Serial data bk bloak wct
| = Enshie TR
i = (b D=1

7 SO — Sonal Carpai Dada: Bit T of the: sccamalmiar = lached o the SO0 ol
liee apel musde availaie 10 o serial peripenal o b [, = 1.
7 SIVE — Seiial Diana Enahde: 1F this hat = 1, 1 crodies e sefial olapn, To impleman
serial ouepet, thin bt seedy & ke crabled
T BEE—[en't Cae
[RS —Hewd RST 7.5 Ifcha b = 1. RST T8 Mip-Oog is rewel. TRi: B o0 addaional
copel K rest R5T 7.4
1 81— Nlak Sei Erohic: IF thia Bl is Wjgh, i erabies fe fanctions of bis Dy, O,
Thix is = menter contrd o9 all (ke (Rbermept masking b 1 fn bl e foe, bs D
3. amd [& o0 Bave arey ofbect on the masks
OMI STy = @ BET 7.9 in crahiad.
= 1, B5T 7.5 it oemked of dishled
O haA—00, = 9 ST 0.9 i onshlesl,
= I, BAT .5 1= monber! v disdided.
oML A—IL o= O RET 5.5 i cenibled.
= L EET 5.5 is siwked oo fishied,

6. INSTRUCTION EXECUTION AND TIMING DIAGRAM:

Each instruction in 8085 microprocessor consists of two part- operation code
(opcode) and operand. The opcode is a command such as ADD and the operand
is an object to be operated on, such as a byte or the content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an
instruction. An instruction cycle consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the
memory or I/0 device. A machine cycle consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate
execution of instructions or programs in a processor.

To execute a program, 8085 performs various operations as:

e Opcode fetch

e Operand fetch

e Memory read/write
e |/Oread/write

External communication functions are:

e Memory read/write
e |/Oread/write
e Interrupt request acknowledge

Opcode Fetch Machine Cycle:

It is the first step in the execution of any instruction. The timing diagram of this
cycleis given in Fig. 7.

The following points explain the various operations that take place and the
signals that are changed during the execution of opcode fetch machine cycle:

T1 clock cycle

i. Thecontent of PC is placed in the address bus; ADO - AD7 lines contains
lower bit address and A8 — A15 contains higher bit address.

I1. IO/'V'_signal is low indicating that a memory location is being accessed. S1
and SO also changed to the levels as indicated in Table 1.
iii. ALE is high, indicates that multiplexed ADO — AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. TheRDsignal is made low by the processor. This signal makes the memory
device load the data bus with the contents of the location addressed by the
processor.

T3 clock cycle

i. Theopcode available on the data bus is read by the processor and moved
to the instruction register.

ii. TheRDsignalis deactivated by making it logic 1.
T4 clock cycle

i. The processor decode the instruction in the instruction register and generate
the necessary control signals to execute the instruction. Based on the
instruction further operations such as fetching, writing into memory etc

takes place.
SIGNAL T n 1! T4 !
i
I
cLock _/__/__/—_/_i
Al AT :>< Higher-order memory faddress
Lowar-order
ADD-ADT b :> Opcode{D7-D0)
ALE /_\
10, §1,50 >< \I&ﬂlﬂ. St=180w1 Jal it}
y s
R0 - \ , / 1.-'"‘;1.:,.}.-' i
i PR D

Fig. 7 Timing diagram for opcode fetch cycle

Memory Read Machine Cycle:

The memory read cycle is executed by the processor to read a data byte from
memory. The machine cycle is exactly same to opcode fetch except: a) It has three
T-states b) The SO signal is set to 0. The timing diagram of this cycle is given in
Fig. 8.

hilhin

L

r3 At

A

IOM 515

1 12

r1

-:}:1 | utwon renmyprone
. .-'lmmg:_ ‘{:.- CatalFT-Dn

=1 =g

; _—"\; r.

Fig. 8 Timing diagram for memory read machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data bytein a

memory location. The processor takes three T-states and WR signal is made low.

The timing diagram of this cycle is given in Fig. 9.

I/0 Read Cycle:

The I/0 read cycle is executed by the processor to read a data byte from 1/0 port or

from peripheral, which is I/0 mapped in the system. The 8-bit port address is

placed both in the lower and higher order address bus. The processor takes three
T-states to execute this machine cycle. The timing diagram of this cycle is given in

Fig. 10.

LT :}{. IIql-l-'\-rdI'.l'l'\-lTl'l'fl-H'l.l'l)
- T)
aL=—slnr bl = |’< n:u.*-.'-.lI- 1Y

_ | i
HE d Y

.

i)
o R "‘:.:: T = | LR

- . I
e VAR

Fig. 9 Timing diagram for memory write machine

cycle

JHal : -

11

AR ‘_//_Rw_f a

N

FERT TR }(: Tl phims
=, —— P a—
D0 Ao :hﬂmnm} e g, b

g }M
",

' (N CEE

Kl 8.5 }\f T R
Ad A

Fig. 10 Timing diagram 1/0 read machine
cycle

I/0 Write Cycle:

The I/0 write cycle is executed by the processor to write a data byte to 1/0 port or
to a peripheral, which is I/0 mapped in the system. The processor takes three T-
states to execute this machine cycle. The timing diagram of this cycle is given in

Fig. 11.
= — — = TIT T
1 "] . 4
| i - ——
|)]
(9 - . ra I'\"'\._ _."I-._
V1AL ' - - ' " .-"'. . —
JT-EeaT I_\,-:_"' ont 2dde i
_
_—
I e . - . LT
r[7 =fC | .-_‘_“--'M Pm.a_i:l'!m = ,'|:__ Mrw o 0700 ._._.-'||._:.
1 II -.I.
! '.'“'\-u |I
— :
~E - P!
- " ""*.III e
| .
. — .II __.-"'-f——i
v R I
i - \ -. .-.-.-.
I o5 s _‘:""L ny=- . 3" z0Ek=A

Fig. 11 Timing diagram 1/0 write machine cycle

Ex: Timing diagram for IN 80H.

The instruction and the corresponding codes and memory locations are given

in Table 5.

Table 5 IN instruction

Address Mnemonics Opcode
800F IN 80H DB
8010 80

i. During the first machine cycle, the opcode DB is fetched from the memory,
placed in the instruction register and decoded.

memory location.
iii.
bus and the

During second machine cycle, the port address 80H is read from the next

During the third machine cycle, the address 80H is placed in the address

data read from that port address is placed in the accumulator.

The timing diagram is shown in Fig.
12.

- —_
1 == ¢ W o m, Tw™ MW, TR
e - =/ s , m I."
:"., I— - v .I'l. .li_ll'_l'—ll'n_l l'n_lll_lll_-'li_ll' .
' . | . H
— — = .t s - I:ﬂl_il
T .l.-:l-l-l- |_:.l|] .:' — _Elll H !
I A ;L= N | = K
Iu_il I,_|| ||_il
ME - 1, -
HC _'\ll " N I " .'_
1 ’ LS. S !——'I
lﬂt —_— - —
-
ol e [y JEE Yo Ma [y [T

P e om oas s m om adtem B mEp e pEp————

Fig. 12 Timing diagram forthe IN instruction

7.
8085 INTERRUPTS

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control
from its current program execution to another program having higher priority. The
interrupt signal may be given to the processor by any external peripheral device.

The program or the routine that is executed upon interrupt is called interrupt
service routine (ISR). After execution of ISR, the processor must return to the
interrupted program. Key features in the interrupt structure of any microprocessor
are as follows:

i. Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular
interrupt signal. This address is called interrupt vector address (IVA).

iii. Masking and unmasking feature of the interrupt signals.

iv. Priority among the interrupts.

v. Timing of the interrupt signals.

vi. Handling and storing of information about the interrupt program (status
information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are
classified as:

Vectored and Non-Vectored Interrupts
e Vectored interrupts require the IVA to be supplied by the external
device that gives the interrupt signal. This technique is vectoring, is
implemented in number of ways.
e Non-vectored interrupts have fixed IVA for ISRs of different interrupt
signals.
Maskable and Non-Maskable Interrupts
e Maskable interrupts are interrupts that can be blocked. Masking can
be done by software or hardware means.
e Non-maskable interrupts are interrupts that are always recognized,
the corresponding ISRs are executed.

Software and Hardware
Intarrugtftware interrupts are special instructions, after execution transfer
the control to predefined ISR.
e Hardware interrupts are signals given to the processor, for
recognition as an interrupt and execution of the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is
recognized:

Save the PC content and information about current state (flags, registers
etc) in the stack.

Load PC with the beginning address of an ISR and start to execute it.
Finish ISR when the return instruction is executed.

Return to the point in the interrupted program where execution was
interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart
(RST) instructions. These are one byte instructions that make the processor
execute a subroutine at predefined locations. Instructions and their vector
addresses are given in Table 6.

Jf%%tlreu 8t§)oq‘1 v'\C'S Feh fHFepr%ngg g% d thleri]F[\e//gﬁtﬁfre\ég%tpersses
RST 0 Cc7 0000H
RST 1 CF 0008H
RST 2 D7 0010H
RST 3 DF 0018H
RST 4 E7 0020H
RST 5 EF 0028H
RST 6 F7 0030H
RST 7 FF 0032H

The software interrupts can be treated as CALL instructions with default call
locations. The concept of priority does not apply to software interrupts as they are
inserted into the program as instructions by the programmer and executed by the

processor when the respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts — INTR, RST 5.5, RST 6.5,

Their IVA and priorities are given in Table 7.

Table 7 Hardware interrupts of 8085

RST 7.5 and TRAP.

Interrupt Interrupt vector Maskable ornon- | Edge orlevel | priority
address maskable triagered
TRAP 0024H Non-makable Level 1
RST7.5 003CH Maskable Rising edge 2
RST 6.5 0034H Maskable Level 3
RST 5.5 002CH Maskable Level 4
INTR Decided by hardware Maskable Level 5

Masking of Interrupts:

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST
7.5. The masking of 8085 interrupts is done at different levels. Fig. 13 shows the

organization of hardware interrupts in the 8085.

— E— —_— Oy
o) — 0 5 -
[owe : 7
|
Lkl | l:i-%.:. - L 1
EI) r ',i--:; - 0T
Mur | -
-1 I
Lo | NP .

=E T

Fig. 13 Interrupt structure of
8085

The Fig. 13 is explained by the following five points:

i. The maskable interrupts are by default masked by the Reset signal. So no
interrupt is recognized by the hardware reset.
ii. Theinterrupts can be enabled by the El instruction.

iii. Thethree RST interrupts can be selectively masked by loading the
appropriate word in the accumulator and executing SIM instruction. This is
called software masking.

iv. All maskable interrupts are disabled whenever an interrupt is recognized.

v. All maskable interrupts can be disabled by executing the Dl instruction.

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset
interrupt enable flip-flop in the processor and the interrupts are disabled. To
enable interrupts, El instruction has to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When
executed, the SIM instruction reads the content of accumulator and accordingly
mask or unmask the interrupts. The format of control word to be stored in the
accumulator before executing SIM instruction is as shown in Fig. 14.

Bit postion D7 117 DE 4 1c] oz M D&
Marne SO SDE A RTE MEE MF.S MEF O MES
Explanatsn Seral S=nal Mot Resel Mask sed St Szt Setse
dara dala used HETTS esmable— Lo L o 1o
wbe ensblke— fip-flop Setpo 1 mask mmsk mask
ET= 1 gl bo lemask RST RST RET
1 Er intermupts 7.3 .5 55
sending

Fig. 14 Accumulator bit pattern for SIM instruction

In addition to masking interrupts, SIM instruction can be used to send serial data
on the SOD line of the processor. The data to be send is placed in the MSB bit of
the accumulator and the serial data output is enabled by making D6 bit to 1.

RIM Instruction:

RIM instruction is used to read the status of the interrupt mask bits. When RIM
instruction is executed, the accumulator is loaded with the current status of the
interrupt masks and the pending interrupts. The format and the meaning of the
data stored in the accumulator after execution of RIM instruction is shown in Fig.
15.

In addition RIM instruction is also used to read the serial data on the SID pin of the
processor. The data on the SID pin is stored in the MSB of the accumulator after
the execution of the RIM instruction.

Bl o7 D& D5 D4 (1 E] 17 1] Do

Pt

MName S5ID 175 165 155 IE M75 M65 M5

Explanation Seral Settol Setiwnl Setiol Setin Setiod 5::1n-1 Setta l
inpun if RST fRST ifRST af ifRST if RST |FEE$T
data TS5is 635is S5S5is mterrops 7.5 65is 531s
imthe pending pending pending ame masked masked masked
SiDy enahled
pan

Fig. 15 Accumulator bit pattern after execution of RIM instruction

Ex: Write an assembly language program to enables all the interrupts in 8085 after

reset. EI :Enableinterrupts
MVI A, 08H : Unmask the interrupts

SIM : Set the mask and unmask using SIM instruction Timing of Interrupts:

The interrupts are sensed by the processor one cycle before the end of execution of
each instruction. An interrupts signal must be applied long enough for it to be
recognized. The longest instruction of the 8085 takes 18 clock periods. So, the
interrupt signal must be applied for at least 17.5 clock periods. This decides the
minimum pulse width for the interrupt signal.

The maximum pulse width for the interrupt signal is decided by the condition that
the interrupt signal must not be recognized once again. This is under the control
of the programmer.

QUESTIONS:

pL N~

O 0N,

11.

12.

13.

14.

What is the function of a microprocessor in a system?
Why is the data bus in 8085 bidirectional?
How does microprocessor differentiate between data and instruction?

How long would the processor take to execute the instruction LDA
1753H if the T-state duration is 2ps?

Draw the timing diagram of the instruction LDAX B.

Sketch and explain the various pins of the 8085.

Explain direct addressing mode of 8085 with an example?

Draw and explain the timing diagram of the instruction IN 82H.

What is meant by ‘priority of the interrupts'? Explain the operation of the
interrupts structure of the 8085, with the help of a circuit diagram.

. Explain the bit pattern for SIM instruction. Write the assembly language

program lines to enable all the interrupts in the 8085 after reset.

Write the logical instructions which affect and which does not affect flags in
8085.

Write an ALP in 8085 MPU to reject all the negative readings and add all
the positive reading from a set of ten reading stored in memory locations

starting at XX60H. When the sum exceeds eight bits produce output FFH to
PORT1 to indicate overload otherwise display the sum.

Write an ALP in 8085 to eliminate the blanks (bytes with zero value) from a
string of eight data bytes. Use two memory pointers: one to get a byte and the
other to store the byte.

Design an up-down counter to count from 0to 9 and 9 to 0 continuously with a

1.5 second delay between each count, and display
the count at one of the output ports.

MODULE: 2
1. INTERFACING MEMORY AND I/0 DEVICES WITH 8085

The programs and data that are executed by the microprocessor have to be stored
in ROM/EPROM and RAM, which are basically semiconductor memory chips. The
programs and data that are stored in ROM/EPROM are not erased even when power
supply to the chip is removed. Hence, they are called non-volatile memory. They can
be used to store permanent programs.

In a RAM, stored programs and data are erased when the power supply to the chip
is removed. Hence, RAM is called volatile memory. RAM can be used to store
programs and data that include, programs written during software development for
a microprocessor based system, program written when one is learning assembly
language programming and data enter while testing these programs.

Input and output devices, which are interfaced with 8085, are essential in any
microprocessor based system. They can be interfaced using two schemes: I/0
mapped I/0 and memory-mapped I/0. In the I/0O mapped I/0 scheme, the I/0
devices are treated differently from memory. In the memory-mapped I/0 scheme,
each 1/0 device is assumed to be a memory location.

2. INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of
memory locations can be interfaced with it. The memory address space of the
8085 takes values from 0000H to FFFFH.

The 8085 initiates set of signals such ailoﬂ, RD and WR \vhen it wants to read
from and write into memory. Similarly, each memory chip has signals such as CE or
CS(chip enable

r WR (write enable or write)

or chip select), OE orRD (output enable or read) and WE,
associated with it.

Generation of Control Signals for Memory:

I0/M

When the 8085 wants to read from and write into memory, it activates RD
and WR - -
signals as shown in Table 8.
l10/M RDA /a2 WR Operation
Taple § Status ofg =" | RD and; "' " sighalg glssipshnemany freas ganurije
operaigons 1 0 8085 writes data into memory

Using signals, two control signals MEMR (memory read) and

MEMW (memory write) are generated. Fig. 16 shows the circuit used to generate
these signals.

4 MEMW

Fig. 16 Circuit used to generate MEMR an signals

When is 10/M high, both memory control signals are deactivated irrespective of the

status of RD and WR signals.

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such that
the address range allocated to the chip is 0000H — 1FFFH.

Specification of IC 2764:

o 8 KB (8 x2'0byte) EPROM chip
o 13 address lines (273 bytes = 8 KB)

Interfacing:

o 13 address lines of IC are connected to the corresponding address lines of
8085.

o Remaining address lines of 8085 are connected to address decoder formed
using
logic gates, the output of which is connected to the CE pin of IC.

o Address range allocated to the chip is shown in Table 9.
o Chip ie enahled whenever the RN&5 nlares an addreas allacated tn EPROM

chip
e
o =
]
Py .3 II.-" B3
[~ 7 "
Py ,.f'.]
?’]
pr : ot

:-: = f{ == =

) .—:EM%:‘ “.I:ﬂ-iﬂ:lr-lm |

Fig. 17 Interfacing IC 2764 with the 8085

Table 9 Address allocated to IC
2764

A1 A4 A13 AI2 Al1 A0 A3 AB AT A6 A5 Ad A3 AZ A1 AD Address
p B ® ‘0 9 o o o9 " o oo 9 0o o0 0 0 iWHHE
O @ ® '0¢ ¢ QO 0 44 0 0 0 a9 4@ 0 0 1 HiH
O L T S S
B 0 B] ! 1 1 1 1 1 1 1 1 1 a 1

¢ o @ ‘1 1 1 UL 1 1 1 1 1 1 1 1 1 IFFFH

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder such
that the starting address assigned to the chip is 4000H.

Specification of IC 6264:

e 8K x8RAM
e 8KB=2"3bytes
e 13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When
the address 4000H to 5FFFH are written in binary form, the values in the lines A15,
A14,A13 are0, 1 and 0 respectively. The NAND gate is designed such that when
the lines A15 and A13 carry 0 and A14 carries 1, the output of the NAND gateis 0.
The NAND gate outputis_

in turn connected to the CE1 pin of the RAM chip. A NAND output of 0 selects the
RAM chip for read or write operation, since CE2 is already 1 because of its
connection to +5V. Fig. 18 shows the interfacing of IC 6264 with the 8085.

R

|
3 -)
. \
| - | | |
. ;

I

O R T T
Je=

—
! <
|
1
1
=
I
=
o
=

I
[

Fig. 18 Interfacing 6264 IC with the 8085

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the
starting addresses assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

e 2Kx8RAM
e 2KB=2"bytes
e 11 address lines

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip
Tisand chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address
range of the two chips.

Table 10 Address range for IC 6116

AlS AR A13 A12 !L1‘IE.A1IJ.H.'I AB AT AE AS Ad A1 A2 A1 AD Address

Il O @ 0o 0 40 0 % 0 0 0 B 4 0 0 S0

Interfacing:

e Fig. 19 shows the interfacing.

e A0 - A10 lines of 8085 are connected to 11 address lines of the RAM chips.

e Three address lines of 8085 having specific value for a particular RAM are
connected to the three select inputs (C, B and A) of 74LS138 decoder.

e Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1
and A13=0,A12=1 and A11=0 for the address assigned to RAM 2.

e Remaining lines of 8085 which are constant for the address range assigned
to the two RAM are connected to the enable inputs of decoder.

e When 8085 places any address between 8000H and 87FFH in the address
bus, the select inputs C, B and A of the decoder are all 0. The YO output of
the decoder is also 0, selecting RAM 1.

e When 8085 places any address between 9000H and 97FFH in the address
bus, the select inputs C, B and A of the decoder are 0,1 and 0. The Y2
output of the decoder is also 0, selecting RAM 2.

A2 MLEIR : bi < | =2 &= =2

[
Al

SNONNERRERE]
[
F

i3 gy

: = O . M s
: / - RAMCHp 1 / - BAMCE2
N . A

e D o L L e

Fig. 19 Interfacing two 6116 RAM chips using 74LS138 decoder
3. PERIPHERAL MAPPED I/0 INTERFACING
In this method, the I/0 devices are treated differently from memory chips. The
control signals 70 read ('O) and 170 write ('OW), which are derived from the

10/M ,RD and WR signals of the 8085, are used to activate input and output
devices, respectively. Generation of these control signals is shown in Fig. 20. Table

11 shows the status of I0/M, RD and WR signals during I/0 read and 1/0 write

operation.
1T ui (51

e -
| —— S

3

Fig. 20 Generation of IOR and IOW signals

IN instruction is used to access input device and OUT instruction is used to access
output device. Each I/0 device is identified by a unique 8-bit address assigned to it.
Since the control signals used to access input and output devices are different,
and all I/0 device use 8-bit address, a maximum of 256 (28) input devices and 256
output devices can be interfaced with 8085.

Table 11 Status oftOR and1OW signals in 8085.

IO/M | RD | WR | TOR | TOW Operation
1 0 1 0 1 I/0 read operation
1 1 0 1 0 I/0 write operation
0 X X 1 1 Memory read or write
operation

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to
the DIP switch if FOH.

IN instruction is used to get data from DIP switch and store it in accumulator.
Steps involved in the execution of this instruction are:

i. Address FOH is placed in the lines AO — A7 and a copy of itin lines A8 -
A15— S

ii. ﬁ]aecl(g)ﬁssggd"{glﬁﬁ%tiag{gq)&g(?R = 0), which makes the selected input device

iii. e data in the data bus is read and store in the

accumulator.
Fig. 21 shows the interfacing of DIP

switch.
A7 A6 A5 A4 A3 A2 Al AO
1 1 1 1 0 0 0 0 = FOH

A0 — A7 lines are connected to a NAND gate decoder such that the output of
NAND gateis —

0. The outputef NAND-gate is ORed with the IOR signal and the output of OR gate
is connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from
the DIP switch is placed on the data bus of the 8085. The 8085 read data

and store in the

accum! =iy

ULt e

Lo T— ——

[. 1

| e |

A _, _

L~ : :

e ;
w N

- fﬂ___ BHIDP swich i+
R
i]

g e— ze

Fig. 21 interfacing of 8-bit DIP switch with 8085

4. MEMORY MAPPED I/0 INTERFACING

In memory-mapped I/0, each input or output device is treated as if it is a memory

location. The MEMR and MEMW ¢ontrol signals are used to activate the devices.

Each input or

output device is identified by unique 16-bit address, similar to 16-bit address
assigned to memory location. All memory related instruction like LDA 2000H,
LDAX B, MOV A, M can be used.

Since the I/0 devices use some of the memory address space of 8085, the
maximum memory capacity is lesser than 64 KB in this method.

Ex: Interface an 8-bit DIP switch with the 8085 using logic gates such that the
address assigned to itis FOFOH.

Since a 16-bit address has to be assigned to a DIP switch, the memory-mapped I/0
technique must be used. Using LDA FOFOH instruction, the data from the 8-bit DIP
switch can be transferred to the accumulator. The steps involved are:

i. Theaddress FOFOH is placed in the address bus AO
- At5—

ii. TheTWENBtsi g ahésdaadedevsiraspameitiirediin the
accumulator.
Fig. 22 shows the interfacing

diagram.
-— g4
-y I:-%r:-\.::"-{
- 1 -
=" a—
" vl
-7 -
-
* .5
-~
-
-
v .__.-'I:il < :F.'. .
[L gl 2 e

[————] T

Fig. 22 Interfacing 8-bit DIP switch with 8085

When 8085 executes the instruction LDA FOFOH, it places the address FOFOH in
the address lines A0 — A15 as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
1 1 1 1 0 o o0 o 1 1T 1 1 0 0 0 O =FOFOH

The address lines are connected to AND gates. The output of these gates along
with MEMR

signal are connectedto a NAND gate, so that when the address FOFOH is placed in
the

address bus and MEMR = 0 its output becomes 0, thereby enabling the buffer
74LS244. The data from the DIP switch is placed in the 8085 data bus. The 8085
reads the data from the data bus and stores it in the accumulator.

INTEL 8255: (Programmable Peripheral Interface)

The 8255A is a general purpose programmable I/0 device designed for
use with Intel microprocessors. It consists of three 8-bit bidirectional I/
O ports (241/0 lines) that can be configured to meet different system I/
O needs. The three ports are PORT A, PORT B & PORT C. Port A
contains one 8-bit output latch/buffer and one 8-bit input buffer. Port
B is same as PORT A or PORT B. However, PORT C can be split into two
parts PORT C lower (PC;PC,) and PORT C upper (PC;-PC,) by the

control word. The three ports are divided in two groups Group A (PORT
A and upper PORT C) Group B (PORT B and lower PORT C). Thetwo
groups can be programmed in three different modes. In the first mode
(mode 0), each group may be programmed in either input mode or
output mode (PORT A, PORT B, PORT C lower, PORT C upper). In mode
1, the second’s mode, each group may be programmed to have 8-lines
of input or output (PORT A or PORT B) of the remaining 4-lines (PORT
C lower or PORT C upper) 3-lines are used for hand shaking and
interrupt control signals. The third mode of operation (mode 2) is a
bidirectional bus mode which uses 8-line (PORT A only for a
bidirectional bus and five lines (PORT C upper 4 lines and borrowing
one from other group) for handshaking.

The 8255 is contained in a 40-pin package, whose pin out is
shown below:

B255

PA3
P 2
Py |
Pt
RT?
(R
Gt o
Al 4
A0

P74+
P —
L
g —
PO

g bk 3
| B R

= = e e = Gl R

CE=DNME W=D

| L

PC1
P2
3
P S
I3l
FBE2

LN) B B

i

!
bt
=

40 1 paa
30 4+ PAS
IR T PAG
A7 4 PAT
36 -WR

PIN Names
RESET - Reset input

-5 Chip selected

35 - RESEF FR Readinput

A4 T DO

33 = I3
P
31 +—D3
30+ 4
29 7T I35
2H —+ I3
27T 1T I7

2 == Wi
25 FET
24 —PlEG
23irres
27 =+ PRE4
21 T PR3

The block diagram is shown below:

mwh - Writeinput
A,A,— Port Address

PA,— PA,— PORT A
PB,—- PB,—~ PORTB
PC,- PC,—~ PORTC
VCC - +5v

GND -Ground

Group A
control

I Frwtzn
FEiis

sl . T
Group A ! ':"_frg,l A
PORT A

Fhinnid ¥emr J

i .
T E]
i
rJ
PG MG,
[|n:-t.|r|-.-"~. h'.'_%f_}
| S i S R i
Il cwwrgr
Group B | & T
P o
control

Y. [Group B E—&—3

7 PORT B g,

Functional Description:

This support chip is a general purpose I/0 component to interface
peripheral equipment to the microcomputer system bus. It is

programmed by the system software so that normally no external
logic is necessary to interface peripheral devices or structures.

Data Bus Buffer:

It is a tri-state 8-bit buffer used to interface the chip to the system
data bus. Data is transmitted or received by the buffer upon execution
of input or output instructions by the CPU. Control words and status
information are also transferred through the data bus buffer. The data

lines are connected to BDB of p,,

Read/Write and logic control:
The function of this block is to control the internal operation of the

device and to control the transfer of data and control or status words.
It accepts inputs from the CPU address and control buses and in turn
issues command to both the control groups.

__Chip Select:
ow on this input selects the chip and enables the communication

between the 8255 A & the CPU. It is connected to the output of
address decode circuitry to select the device when it (Reeﬂ). A low on
this input enables the 8255 to send the data or status infofmation to
the CPU on the data bus.

T E (Write):

A low on this input pin enables the CPU to write data or control words
into the 8255 A.

A,, A, port select:

These input signals, in conjunction with the and inffgys, contfpfithe

selection of one of the three ports or the control word registers. They

are normally connected to the least significant bits of the address bus

(A,and A).

Following Table gives the basic operation,

A, A, il TR 3 Input operation

0 0 0 1 0 PORTA —* Data bus

0 1 0 1 0 PORTB — Data bus

1 0 0 1 0 PORTC —* Data bus
Output operation

0 0 1 0 0 Data bus-PORT A

0 1 1 0 0 Data bus— PORT B

1 0 1 0 0 Data bus— PORTC

1 1 1 0 0 Data bus—— control

All other states put data bus into tri-state/illegal condition.

RESET:

A high on this input pin clears the control register and all ports (A, B &

C) are initialized to input mode. This is connected to RESET OUT of
8255. This is done to prevent destruction of circuitry connected to

port lines. If port lines areinitialized as output after a power up or

reset, the port might try to output into the output of a device
connected to same inputs might destroy one or both of them.

PORTs A, B and C:
The 8255A contains three 8-bit ports (A, B and C). All can be

configured in a variety of functional characteristic by the system
software.

PORTA:

One 8-bit data output latch/buffer and one 8-bit data input latch.
PORT B:

One 8-bit data output latch/buffer and one 8-bit data input buffer.

PORT C:
One 8-bit data output latch/buffer and one 8-bit data input buffer (no

latch for input). This port can be divided into two 4-bit ports under the
mode control. Each 4-bit port contains a 4-bit latch and it can be used
for the control signal outputs and status signals inputs in conjunction
with ports A and B.

Group A & Group B control:

The functional configuration of each port is programmed by the
system software. The control words outputted by the CPU configure
the associated ports of the each of the two groups. Each control block
accepts command from Read/Write content logic receives control
words from the internal data bus and issues proper commands to its
associated ports.

Control Group A — Port A & Port C upper Control Group B — Port B &
Port C lower

The control word register can only be written into No read operation if
the control word register is allowed.

Operation Description:

Mode selection:

There are three basic modes of operation that can be selected by the
system software.

Mode 0: Basic Input/output Mode 1: Strobes Input/output
Mode 2: Bi-direction bus.

When thereset input goes HIGH all poets are set to mode0’ as input
which means all 24 lines are in high impedance state and can be used
as normal input. After thereset is removed the 8255A remains in the
input mode with no additional initialization. During the execution of
the program any of the other modes may be selected using a single
output instruction.

The modes for PORT A & PORT B can be separately defined, while
PORT C is divided into two portions as required by the PORT A and
PORT B definitions. The ports are thus divided into two groups Group
A & Group B. All the output register, including the status flip-flop will
be reset whenever the mode is changed. Modes of the two group may
be combined for any desired I/0 operation e.g. Group A in mode ‘1’
and group B in mode ‘0'.

The basic mode definitions with bus interface and the mode definition
format are given in fig (a) & (b),

AR

BCB «—=—»
BDR > — -
n.wn]} "ﬂ'ﬁ "ﬂ"r- CS
i e
D:-' - Dt:r
Mode "D
B255
PORT I3
PHF'P 1 F{%'F{L PE&'P{L PAy PA,,
B35 Moda 1
PCO 1 2 3 4 5 b 7

VIl L

PE-PB, ™NTRy JaF STH, INTR, sTR, IBE, 10 1D E'hu

ﬂr s r ar

OBE, ACK, 10 "":“ﬂ Dm}-'-
Mode 2
PCO | 2 3 4 6 7
HirFH" HH‘—JMhA—FI Kﬂ ﬂ Ehrphh
L0 aer combral Hﬂﬂ#mnnm Hi-directional

| E]TE

INTEL 8259A Programmable Interrupt Controller
The 8259A is a programmable interrupt controller designed to work

with Intel microprocessor 8080 A, 8085, 8086, 8088. The 8259 A
interrupt controller can

1) Handle eight interrupt inputs. This is equivalent to providing eight
interrupt pins on the processor in place of one INTR/INT pin.

2) Vector an interrupt request anywhere in the memory map.
However, all the eight interrupt are spaced at the interval of either
four or eight location. This eliminates the major
drawback, 8085 interrupt, in which all interrupts are vectored to
memory location on page 00,.

3) Resolve eight levels of interrupt priorities in a variety of modes.

4) Mask each interrupt request individually.

5) Read the status of pending interrupts, in service interrupts, and
masked interrupts.

6) Be set up to accept either the level triggered or edge triggered
interrupt request.

7) Mine 8259 as can be cascade in a master slave configuration to

handle 64 interrupt inputs.

The 8259 Ais contained in a 28-element in line package that requires
only a compatible with 8259. The main difference between thetwo is
that the 8259 A can be used with Intel 8086/8088 processor. It also
induces additional features such as level triggered mode, buffered

mode and automatic end of interrupt mode. The pin diagram and

interval block diagram is shown below:

823YA

132 <

] -
D
CAS-
CAS]-
GND

i Bl =

- 10
11
-12
- 13
14

I8 +—

'I'?_._

26+
'I-_--TI -
24+
L S

Y i

a4
20 1
| U=
18—
17
I+

15+

The pins are defined as follows:

25 Chip select

WCC
Al
[R7
[Ri
[R5
R4
[R3
[R2
K]
IR0

INT
SPEN
CAS2

To access this chip, is mgge low. ALOW on this pin enables &
commun?ﬁionﬁween the CPU and the 8259A. This pinis

connected to address bus through the decoder logic circuits. INTA

functions are independent of .

EE;

Il

A low on this pin. When isé?w enables the 8259 A to accept

command words from CPU.

a0
Alow on this pin when is lgsr enables these 8259 A to release status on
to the data bus for the CPU. The status in dudes the contents of IMR,

ISR or TRR register or a priority level.
Bidirectional data bus control status and interrupt in a this bus. This
bus is connected to BDB of 8085.

CAS)-CAS,:
Cascade lines: The CAS lines form a private 8259A bus to control a

multiple 8259A structure ie to identify a particular slave device. These
pins are outputs of a master 8259A and inputs for a slave 8259A.

T/ Salve program/enable buffer:

This is a dual function pin. It is used as an input to determine whether
the 8259A is to a master (/531m asaslave(/=0). I8 afao used as
an output to disable the data bus transceivers when data are being
transferred from the 8259A to the CPU. When in buffered mode, it can
be used as an output and when not in the buffered modeit is used as
an input.

INT:

This pin goes high whenever a valid interrupt request is asserted. It is
used to interrupt the CPU, thus it is connected to the CPU's interrupt pin
(INTR).

interrﬂpt: Acknowledge. This pin is used to enable 8259A interrupt
vector data on the data bus by a sequence of interrupt request pulses
issued by the CPU.

IRy-IR;:

Interrupt Requests: Asynchronous interrupt inputs. An interrupt request

is executed by raising an IR input (low to high), and holding it high until it

is acknowledged. (Edge triggered mode).or just by a high level on an IR

input (levels triggered mode).

Ag:

A, address line: This pin acts in conjunction with the FpF TFRins.
It igTrsed by the 8259A to send various command words from the CPU

and to read thestatus. If is connected to the CPUA,address

line. Two addresses must bereserved in thel/O

address space for each 8259 in the system.

Functional Description:

The 8259 A has eight interrupt request inputs, TR2 IR0. The 8259 A uses
its INT output to interrupt the 8085A via INTR pin. The 8259A receives
interrupt acknowledge pulses fromthe atits |nput Vecfﬁ.ﬁddress
used by the 8085 A to transfer controlto the serV|ce subroutine of the
interrupting device, is provided by the 8259 A on the data bus. The
8259A is a programmable device that must be initialized by command
words sent by the. After initialization the 8259

A mode of operation can be changed by operation command words
fromthe.

— Data Bus . T
3 - Lyl g |
D7-TH Buffer _|' |
’ |
R ——a [Ro
R I{q_':!.-:L _ " _ Il
2 Ve |: In service I{I‘.ﬂll‘.l'_- H.‘-.llll.'hl 3 “_
I- . ' L EWEYET i
A Logac Reg (1SR - ReglIRR} d
[B7

|
CASIH=— Cascade _ \
i Interrupt Maosk Reg (IMR)
[8

CAS] * A Buffer
w Intcmal bus

CASZ+—— Comparubon

__ 7

SPEN
The descriptions of various blocks are,

Data bus buffer:

This 3- state, bidirectional 8-bit buffer is used to interface the 8259A
to the system data bus. Control words and status information are
transferred through the data bus buffer.

Read/Write & control logic:

The function of this block is to accept OUTPUT commands from the
CPU. It contains the initialization command word (ICW) register and
operation command word (OCW) register which store the various
control formats for device operation. This function block also allows
the status of 8159A to be transferred to the data bus.

Interrupt request reqgister (IRR):

IRR stores all the interrupt inputs that are requesting service. Basically,
it keeps track of which interrupt inputs are asking for service. If an
interrupt input is unmasked, and has an interrupt signal on it, then the
corresponding bit in the IRR will be set.

Interrupt mask register (IMR):

The IMR is used to disable (Mask) or enable (Unmask) individual
interrupt inputs. Each bit in this register corresponds to the interrupt
input with the same number. The IMR operation on the IRR. Masking
of higher priority input will not affect the interrupt request lines of
lower priority. To unmask any interrupt the corresponding bit is set ‘0’.

In service register (ISR):

Thein service registers keeps tracks of which interrupt inputs are
currently being serviced. For each input that is currently being
serviced the corresponding bit will be set in the in service register.
Each of these 3-reg can beread as statusreg.

Priority Resolver:

This logic block determines the priorities of the set in the IRR. The
highest priority is selected and strobed into the corresponding bit of
the ISR during pulse.

TNTZ
Cascade buffer/comparator:

This function blocks stores and compare the IDS of all 8259A’s in the
reg. The associated 3-1/0 pins (CAS0-CAS2) are outputs when

8259A is used a master. Master and are inputs when 8259A is used as
a slave. As a master, the 8259A sends the ID of the interrupting slave
device onto the cas2-cas0. The slave thus selected will send its pre-
programmed subroutine address on to the data bus during the next

one or two successive PJFJCH-

8257: Direct Memory Access Controller

The Direct Memory Access or DMA mode of data transfer is the fastest
amongst all the modes of data transfer. In this mode, the device may transfer
data directly to/from memory without any interference from the CPU. The device
requests the CPU (through a DMA controller) to hold its data, address and control
bus, so that the device may transfer data directly to/from memory.

The DMA data transfer is initiated only after receiving HLDA signal from the CPU.
Intel's 8257 is a four channel DMA controller designed to be interfaced with their
family of microprocessors. The 8257, on behalf of the devices, requests the CPU
for bus access using local bus request input i.e. HOLD in minimum mode. In
maximum mode of the microprocessor RQ/GT pin is used as bus request input.
On receiving the HLDA signal (in minimum mode) or RQ/GT signal (in maximum
mode) from the CPU, the requesting devices gets the access of the bus, and it
completes the required number of DMA cycles for the data transfer and then
hands over the control of the bus back to the CPU.

Internal Architecture of 8257
The internal architecture of 8257 is shown in figure. The chip support four

DMA channels, i.e. four peripheral devices can independently request for DMA
data transfer through these channels at a time. The DMA controller has 8-bit
internal data buffer, a read/write unit, a control unit, a priority resolving unit along
with a set of registers.

Register Organization of 8257

Tablbe 2757 Beprates Sabactizn

R pintar Hpre Adrerr Topmein ‘_H_FE- HE- e oo’ Doy Soar
A, A, A, A, B, B, D, B, B, b, D, D
CH-0O DA, Addiress L5h [[] 0] Ay Ay A -~ My A, My Ay

MEH [h [E] L] (o] | R .l'll_. .*l.” A .*l.“ g .'l., .l'l.l
CH-O Termemal Count LSH i m 1 [L= Ca C. 4=0 C, L= L =t Cp
ISR & [1 I RE W O, O, O, O, O, O,
CH-1 DA Addrsns L5H [(] 1 L] [& Ay A.: Ay ..5\., .ﬁ: _.?I.I_ .ﬁn
LREA]] [[1 (1] 1 L. . T Ay Ty ey
CH-1 Termesal Coame TS5 (1] (] I [| [l::. 'lf'.b ':-', l:_‘ "—:I- ':I ':I ':l
MRS B [1 [L P Wr O, «,, C Ca T .
CH-Z DA Aadifress 155 i L (0]] ¥ A .ﬁ: A._. "'-I N -1.: “"I ﬁn
LI i L 0 [i M My, AL AL A T T
CH-I Termeas] Couant 158 i 1 n [| 1 skl f-\!- I!_"= ':-I E"J_ l:: i."l I:"._
R i [E i Rd WwWr O, &, C [A T il
CH-3 DMA Address LSH -1 o o A, A, A, A, A, Ay Ay oy
PN 0 i i [1 T TH T T
CH-3 Ter=inst Coust L5H [|] 0 c, ©, <« o, °, C T
LSRR i | |] 1 Rk Wr O,y ©. O T . Cy
MEOHE SIET — 1 L1 Lk o o Al TCE BEW BRP EN3 BEM2 EMN1L ENG
IPan g ol sy
STATLE {Erad onlly] — 1 L [~ a L1} L] [H e TC3 T TS TOo

The 8257 performs the DMA operation over four independent DMA
channels. Each of four channels of 8257 has a pair of two 16-bit registers, viz.
DMA address

register and terminal count register.

There are two common registers for all the channels, namely, mode set register
and status register. Thus there are a total of ten registers. The CPU selects one
of these ten registers using address lines Ao-As. Table shows how the Ao-A3 bits
may be used for selecting one of these registers.

DMA Address Register
Each DMA channel has one DMA address register. The function of this

register is to store the address of the starting memory location, which will be
accessed by the DMA channel. Thus the starting address of the memory block
which will be accessed by the device is first loaded in the DMA address register
of the channel.

The device that wants to transfer data over a DMA channel, will access the block
of the memory with the starting address stored in the DMA Address Register.

Terminal Count Register
Each of the four DMA channels of 8257 has one terminal count register

(TC). This 16-bit register isused for ascertaining that the data transfer through a
DMA channel ceases or stops after the required number of DMA cycles. The low
order 14-bits of the terminal count register are initialised with the binary
equivalent of the number of required DMA cycles minus one.

After each DMA cycle, the terminal count register content will be decremented by
one and finally it becomes zero after the required number of DMA cycles are over.
The bits 14 and 15 of this register indicate the type of the DMA operation
(transfer). If the device wants to write data into the memory, the DMA operation
is called DMA write operation. Bit 14 of the register in this case will be set to one
and bit 15 will be set to zero.

Table gives detail of DMA operation selection and corresponding bit

config " Table DMA Operation Selection Using A /RD and A, "WR
Bis 15 Bir 14 . Tvpe of DMA Operation
0 L1 Verily DMA Cycle
i 1 Write DMA Cycle
I i Read DMA Cyeie
i I (IMegal)
Mode Set Register

The mode set register is used for programming the 8257 as per the
requirements of the system. The function of the mode set register is to enable
the DMA channels individually and also to set the various modes of operation.

The DMA channel should not be enabled till the DMA address register and the
terminal count register contain valid information, otherwise, an unwanted DMA
request may initiate a DMA cycle, probably destroying the valid memory data.
The bits Do-D3 enable one of the four DMA channels of 8257. for example, if Do
is “1’,channel 0 is enabled. If

bit 4 is set, rotating priority is enabled, otherwise, the normal, i.e. fixed priority is
enabled.

D Dg Ds DOy Dy D Dy Dy

T 1 L1 .
Enables Auto Load —— ' L—— Enables Channel 0
Enables TC Stop ————d ! i ~——————— Enables Channel 1
Enables Extended Write ‘ Enables Channel 2
Enables Rotating Priority ' Enables Channel 3

Fig. Bit Definitions of the Mode Set Register

If the TC STOP bit is set, the selected channel is disabled after the terminal count
condition is reached, and it further prevents any DMA cycle on the channel. To
enable the channel again, this bit must be reprogrammed. If the TC STOP bit is
programmed to be zero, the channel is not disabled, even after the count
reaches zero and further request are allowed on the same channel.

The auto load bit, if set, enables channel 2 for the repeat block chaining
operations, without immediate software intervention between the two
successive blocks. The channel 2 registers are used as usual, while the channel
3 registers are used to store the block reinitialisation parameters, i.e. the DMA
starting address and terminal count. After the first block is transferred using
DMA, the channel 2 registers are reloaded with the corresponding channel 3
registers for the next block transfer, if the updateflag is set. The extended write
bit, if set to “1’, extends the duration of MEMW and IOW signals by activating
them earlier, this is useful in interfacing the peripherals with different access
times.

If the peripheral is not accessed within the stipulated time, it is expected to give
the ‘'NOT READY’ indication to 8257, to request it to add one or more wait states
in the DMA CYCLE. The mode set register can only be written into.

Status Register
The status register of 8257 is shown in figure. The lower order 4-bits of

this reglster contain the termlnal count status for the four individual channels. If

any of " R+ MR B O - PR
termin

T— TG Sabus Chanresl O

TC Status Channel 1
T e TC Status Channel 2

TC Slatus Chanral 3
I 1, thee reapactive chanmal has machiad the bisrminl oounl condiion.

These bits remain set till either the status is read by the CPU or the 8257 is reset.
The update flag is not affected by the read operation. This flag can only be
cleared by resetting 8257 or by resetting the auto load bit of the mode set
register. If the update flag is set, the contents of the channel 3 registers are
reloaded to the corresponding registers of channel 2 whenever the channel 2
reaches a terminal count condition, after transferring one block and the next
block is to be transferred using the autoload feature of 8257.

The update flag is set every time, the channel 2 registers are loaded with contents
of the channel 3 registers. It is cleared by the completion of the first DMA cycle of
the new block. This register can only read.

Data Bus Buffer, Read/Write Logic, Control Unit and Priority Resolver

The 8-bit. Tristate, bidirectional buffer interfaces the internal bus of 8257
with the external system bus under the control of various control signals.
In the slave mode, the read/write logic accepts the I/0 Read or I/0 Write signals,
decodes the Ao-A3 lines and either writes the contents of the data bus to the
addressed internal register or reads the contents of the selected register
depending upon whether IOW or I0R signal is activated.
In master mode, the read/write logic generates the IOR and IOW signals to control
the data flow to or from the selected peripheral. The control logic controls the
sequences of operations and generates the required control signals like AEN,
ADSTB, MEMR,
MEMW, TC and MARK along with the address lines A4-A7, in master mode. The
priority resolver resolves the priority of the four DMA channels depending upon
whether normal priority or rotating priority is programmed.

Signal Description of 8257

DRQo-DRQ3 :

These are the four individual channel DMA request inputs, used by the
peripheral devices for requesting the DMA services. The DRQo has the highest
priority while DRQ3 has the lowest one, if the fixed priority mode is selected.

DACKo-DACKS :
These are the active-low DMA acknowledge output lines which inform the

requesting peripheral that the request has been honoured and the bus is
relinquished by the CPU. These lines may act as strobe lines for the requesting
devices.

Do-D7:

These are bidirectional, data lines used to interface the system bus with
the internal data bus of 8257. These lines carry command words to 8257 and
status word from 8257, in slave mode, i.e. under the control of CPU.

The data over these lines may be transferred in both the directions. When the
8257 is the bus master (master mode, i.e. not under CPU control), it uses Do-D7
lines to send higher byte of the generated address to the latch. This address is
further latched using ADSTB signal. the address is transferred over Do-D7 during
the first clock cycle of the DMA cycle. During the rest of the period, data is
available on the data bus.

IOR:

This is an active-low bidirectional tristate input line that acts as an input in
the slave mode. In slave mode, this input signal is used by the CPU to read
internal registers of 8257 .this line acts output in master mode. In master mode,
this signal is used to read data from a peripheral during a memory write cycle.

IOW :
This is an active low bidirection tristate line that acts as input in slave
mode to

load the contents of the data bus to the 8-bit mode register or upper/lower byte
of a 16-bit DMA address register or terminal count register. In the master mode,
it is a control output thatloads the data to a peripheral during DMA memory
read cycle (write to peripheral).

CLK:
This is a clock frequency input required to derive basic system timings for
the internal operation of 8257.

RESET :
This active-high asynchronous input disables all the DMA channels by
clearing the mode register and tristates all the control lines.

A0-A3:

These are the four least significant address lines. In slave mode, they act
as input which select one of the registers to be read or written. In the master
mode, they are the four least significant memory address output lines generated
by 8257.

CS:

This is an active-low chip select line that enables the read/write operations
from/to 8257, in slave mode. In the master mode, it is automatically disabled to
prevent the chip from getting selected (by CPU) while performing the DMA
operation.

A4-A7 .
This is the higher nibble of the lower byte address generated by 8257
during the master mode of DMA operation.

READY:

This is an active-high asynchronous input used to stretch memory read
and write cycles of 8257 by inserting wait states. This is used while interfacing
slower peripherals..

HRQ:

The hold request output requests the access of the system bus. In the non-
cascaded 8257 systems, this is connected with HOLD pin of CPU. In the cascade
mode, this pin of a slave is connected with a DRQ input line of the master 8257,
while that of the master is connected with HOLD input of the CPU.

HLDA :
The CPU drives this input to the DMA controller high, while granting the

bus to the device. This pin is connected to the HLDA output of the CPU. This
input, if high, indicates to the DMA controller that the bus has been granted to
the requesting peripheral by the CPU.

MEMR:
This active —low memory read output is used to read data from the
addressed memory locations during DMA read cycles.

MEMW :

This active-low three state output is used to write data to the addressed
memory location during DMA write operation.

ADST :
This output from 8257 strobes the higher byte of the memory address
generated by the DMA controller into the latches.

AEN:

This output is used to disable the system data bus and the control the bus
driven by the CPU, this may be used to disable the system address and data bus
by using the enable input of the bus drivers to inhibit the non-DMA devices from
responding during DMA operations. If the 8257 is I/0 mapped, this should be
used to disable the other I/0 devices, when the DMA controller addresses is on
the address bus.

ﬁr_‘l 40 P As
low e 2 3 b oAy
MEMR o 3 3B P A
MEMW o 4 7 h A
MARK o 5 ¥ pTC
READY & & 35 My
HLODAH 7 3P Ay
ADSTE G 8 3P By
AEMH 9 g =l T
HRO < 10 M P Ve

Cad 11 = i =0
CLK & 12 208 Dy
RESET o 13 P Dy
DACKZ o 4 2TE Dy
DACKI 0 15 2P0y
DRQy 5 16 25 F DACKD
DRQ, o 17 24 P DACK1
DRQ, g 18 2Pk Ds
DR, 5 19 2P D
GND 8 20 MNPy

Pin diagram of
8257

TC:

Terminal count output indicates to the currently selected peripherals that
the present DMA cycle is the last for the previously programmed data block. If
the TC STOP bit in the mode set register is set, the selected channel will be
disabled at the end of the DMA cycle.

The TC pin is activated when the 14-bit content of the terminal count register of
the selected channel becomes equal to zero. The lower order 14 bits of the
terminal count register are to be programmed with a 14-bit equivalent of (n-1), if
n is the desired

number of DMA cycles.

MARK :
The modulo 128 mark output indicates to the selected peripheral that the
current
DMA cycle is the 128t cycle since the previous MARK output. The mark will be
activated after each 128 cycles or integral multiples of it from the beginning if the
data block (the first DMA cycle), if the total number of the required DMA cycles (n)
is completely divisible by 128.

Vcee:
This is a +5v supply pin required for operation of the circuit.

GND:
This is a return line for the supply (ground pin of the IC).

Interfacing 8257 with 8086
Once a DMA controller is initialised by a CPU property, it is ready to take control

of the system bus on a DMA request, either from a peripheral or itself (in case of
memory-to- memory transfer). The DMA controller sends a HOLD request to the
CPU and waits for the CPU to assert the HLDA signal. The CPU relinquishes the
control of the bus before asserting the HLDA signal.

Ao A]
D \ D |
CPU ———o, % | MEMORY |
“ \\r \ c | A— Address Bus
| B—Data Bus
H [] |
‘u::- HLDA \\?\\ | ; | C—Control Bus
L' o ——
XTT
fl‘.,! B ‘I +
| 1 'y Tl | |
A 4 l - -
—'—"—5 Ji_ / I '.A 1[
CJI | D | i
DMA =d C | PERIPHERAL
CONTROLLER | .. 1 —] 1 .
DRQ

A conceptual implementation of the system is shown in
Figure

Once the HLDA signal goes high, the DMA controller activates the DACK signal
to the requesting peripheral and gains the control of the system bus. The DMA
controller is the sole master of the bus, till the DMA operation is over. The CPU
remains in the HOLD status (all of its signals are tristate except HOLD and
HLDA), till the DMA controller is the master of the bus.

In other words, the DMA controller interfacing circuit implements a switching
arrangement for the address, data and control busses of the memory and
peripheral subsystem from/to the CPU to/from the DMA controller.

QUESTIONS:

1. What are the functions of RAM and ROM chips in a microprocessor-based
system?

2. How much memory, in terms of bytes, can be interfaced with the 8085? why?

What are the differences between memory-mapped I/0 and I/0-mapped 1/0

schemes?

4. Interface two 8K x 8 RAM and a 8K x 8 EPROM chip with the 8085, using

7415138 decoder, such that the starting address assigned to them are

6000H, 8000H and 0000K respectively.

Name the registers available in 8255.

Write the control word format for the I/0 mode of the 8255.

Write a brief note on the I/0 modes of the 8255.

List the internal registers of the 8259.

9. Write a note on cascaded mode of operation in the 8259.

10.Explain the initialization process of the 8259.

11.Draw the block diagram of the 8259 and explain how it can be used for
increasing the interrupt capabilities of the 8085.

12.How is DMA better than programmed data transfer?

13.Give examples of I/0 devices that can be interfaced with DMA.

14.Write the sequence of operation carried out in DMA.

15.Describe in detail how the 8257 can be interfaced with the processor.

w

©No o

MODULE: 3
8086 Microprocessor Architecture and Operation:

Itisa 16 bit yp. 8086 has a 20 bit address bus can access upto 220 memory
locations (1 MB). It can support upto 64K I/0 ports. It provides 14, 16-bit registers.
It has multiplexed address and data bus ADO-AD15 and A16 — A19. It requires
single phase clock with 33% duty cycle to provide internal timing. 8086 is
designed to operate in two modes, Minimum and Maximum. It can prefetches
upto 6 instruction bytes from memory and queues them in order to speed up
instruction execution. It requires +5V power supply. A 40 pin dual in line package.

Minimum and Maximum Modes:

The minimum mode is selected by applying logic 1 to the MN / MX# input pin.
Thisis a single microprocessor configuration. The maximum mode is selected by
applying logic 0 to the MN / MX# input pin. This is a multi micro processors
configuration.

&H AL
il B . B} | ARREZ B
CH £l i T
SEERL T - i - e
2 : mT
M : /
- i g
is
[
. : E
I i
II |I i 1k} d
L
LJ EEMPORAEY. EEGIITERY '
| T - T
ALU —! |t : IS STEUCTION DUERE
T 1 1]] 4 Cl] ._:-.1
[I | e ——

| FLiGs
L] EECUTIO LSIT 4Rk)
|

T INTEEFATE UFIT CBILT

Fig. Architecture of
8086

Pin Diagram of 8086

Pt | I 1 i | S,
ADy T 4 i ADy,
AD, * 1 % " 4,5
Ay, ™ 4 el * A5,
.'I'[l" > i M = -J|||':.-.
an, +—1# i * A48 -
A, * T (F] —_ THHE /8,
AD, = i R8G 1 +ADNAL
:-Ig. . 1 CPU | — = RO/ GT, (HOLD
Am, = 13 H = RN :}.Ilr HILTi4)
AD, : * LOCK (WE} — =
: 1 o ——= g (MO
AD, 14 - 7 (T Ry
A, = 1£ 1§ ..
: : L @MES
-’II': - 1] rl - +|?5.. |'_J.LE|
Rl o« 17 H + Q5 (TNTA)
|.'-.Tr|. : |: E: * TEaT
LK 1 .: * READYT
ol = . " RESET

Internal Architecture of 8086

8086 has two blocks BIU and EU. The BIU performs all bus operations such as
instruction fetching, reading and writing operands for memory and calculating the
addresses of the memory operands. The instruction bytes are transferred to the
instruction queue. EU executes instructions from the instruction system byte
queue. Both units operate asynchronously to give the 8086 an overlapping
instruction fetch and execution mechanism which is called as Pipelining. This
results in efficient use of the system bus and system performance. BIU contains
Instruction queue, Segment registers, Instruction pointer, Address adder. EU
contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag
register.

Bus Interfacr Unit;

It provides a full 16 bit bidirectional data bus and 20 bit address bus. The bus
interface unit is responsible for performing all external bus operations.

Specifically it has the following functions.

Instruction fetch, Instruction queuing, Operand fetch and storage, Address
relocation and Bus control. The BIU uses a mechanism known as an instruction
stream queue to implement a pipeline architecture.

This queue permits prefetch of up to six bytes of instruction code. When ever the
queue of the BIU is not full, it has room for at least two more bytes and at the
same time the EU is not requesting it to read or write operands from memory, the
BIU is free to look ahead in the program by prefetching the next sequential
instruction. These prefetching instructions are held in its FIFO queue. With its 16
bit data bus, the BIU fetches two instruction bytes in a single memory cycle. After
a byte is loaded at the input end of the queue, it automatically shifts up through
the FIFO to the empty location nearest the output.

The EU accesses the queue from the output end. It reads one instruction byte after
the other from the output of the queue. If the queue is full and the EU is not
requesting access to operand in memory. These intervals of no bus activity, which
may occur between bus cycles are known as Idle state. If the BIU is already in the
process of fetching an instruction when the EU request it to read or write operands
from memory or I/0, the BIU first completes the instruction fetch bus cycle before
initiating the operand read / write cycle. The BIU also contains a dedicated adder
which is used to generate the 20 bit physical address that is output on the
address bus. This address is formed by adding an appended 16 bit segment
address and a 16 bit offset address. For example, the physical address of the next
instruction to be fetched is formed by combining the current contents of the code
segment CS register and the current contents of the instruction pointer IP register.
The BIU is also responsible for generating bus control signals such as those for
memory read or write and I/0 read or write.

EXECUTION UNIT : The Execution unit is responsible for decoding and executing
all instructions. The EU extracts instructions from the top of the queue in the BIU,
decodes them, generates operands if necessary, passes them to the BIU and
requests it to perform the read or write bys cycles to memory or I/0 and perform
the operation specified by the instruction on the operands. During the execution of
the instruction, the EU tests the status and control flags and updates them based
on the results of executing the instruction. If the queue is empty, the EU waits for
the next instruction byte to be fetched and shifted to top of the queue. When the
EU executes a branch or jump instruction, it transfers control to a location
corresponding to another set of sequential instructions. Whenever this happens,
the BIU automatically resets the queue and then begins to fetch instructions from
this new location to refill the queue.

CORINICN SIGEMALS

M ame Function Tvpe
..I.II-H— AD 0 Addresd’ Diavitn Bus Bhﬁw}:}nﬂ
ApgiSg-AygiB3| Addres /Stars Orutput - Stats
BHE /57 Bus Enahle ! t
W] tny - Seate
i ini ;
MNME T —y et
_ Comtrol
RID Read Comtrol Potput 1- Seade
TEET Wit Om Test Contral Input
BREADY Wadi Seate Conirels Tnpaur
RESET Sysrans Hesar Tnipeut
NMIT literrupt B oguast Ingpuwt
INTR Interrupt Hegquest Input
CLK Sywtem Clhetle Lopur
Vee +EV Input
GMND Groumnd
Mindmum Medo Signals (A MY = Ve
Namia Funotion Typ=a
HOLD Hedd Bagusi Input
HLIxA Hedd Acknenbodge Chwiput
WR i
" Write Control Eﬁ
MO
Memery or I Camirol BE"
- Dhatn T ransm Doyt
— rlﬁ:m'u 4 Lati
DEX Dars Enahbli %
ALE Address Latch Enabls Crutput
INTA Intarrupt Aclnowledge it

Maximum mode skgmals (| MN/ MX=GND)

Mame Funetion Tvpe
B GT1, 0 | Beguest! Grant Bus Bidirectiomal
Aceess Control
ey Qutpuat,

LK Hiis Prioritv Lock Contral 1- Siate

N Outpat.
F;i:— :‘;iI Bus Cycle Status 3. Sinte

1, sl Instrmction Cruewe Status Oatpui

Internal Registers of 8086

The 8086 has four groups of the user accessible internal registers. They are the
instruction pointer, four data registers, four pointer and index register, four
segment registers.

The 8086 has a total of fourteen 16-bit registers including a 16 bit register called
the status register, with 9 of bits implemented for status and control flags. Most
of the registers contain data/instruction offsets within 64 KB memory segment.
There are four different 64 KB segments for instructions, stack, data and extra
data. To specify where in 1 MB of processor memory these 4 segments are located
the processor uses four segment registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with
processor instructions. The processor uses CS segment for all accesses to
instructions referenced by instruction pointer (IP) register. CS register cannot be
changed directly. The CS register is automatically updated during far jump, far call
and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with
program stack. By default, the processor assumes that all data referenced by the
stack pointer (SP) and base pointer (BP) registers is located in the stack segment.
SS register can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with
program data. By default, the processor assumes that all data referenced by
general registers (AX, BX, CX, DX) and index register (S|, DI) is located in the data
segment. DS register can be changed directly using POP and LDS instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment,
usually with program data. By default, the processor assumes that the DI register
references the ES segment in string manipulation instructions. ES register can be
changed directly using POP and LES instructions. It is possible to change default
segments used by general and index registers by prefixing instructions with a CS,
SS, DS or ES prefix.

All general registers of the 8086 microprocessor can be used for arithmetic and
logic operations. The general registers are:

Accumulator register consists of two 8-bit registers AL and AH, which can be
combined together and used as a 16-bit register AX. AL in this case contains the
low-order byte of the word, and AH contains the high-order byte. Accumulator can
be used for I/0 operations and string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined
together and used as a 16-bit register BX. BL in this case contains the low-order
byte of the word, and BH contains the high-order byte. BX register usually contains
a data pointer used for based, based indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined
together and used as a 16-bit register CX. When combined, CL register contains
the low-order byte of the word, and CH contains the high-order byte. Count register
can be used in Loop, shift/rotate instructions and as a counter in string
manipulation,.

Data register consists of two 8-bit registers DL and DH, which can be combined
together and used as a 16-bit register DX. When combined, DL register contains
the low-order byte of the word, and DH contains the high- order byte. Data register
can be used as a port number in I/0 operations. In integer 32-bit multiply and
divide instruction the DX register contains high-order word of the initial or
resulting number.

The following registers are both general and index registers:
Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register
is usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. Sl is used for indexed, based indexed and
register indirect addressing, as well as a source data address in string
manipulation instructions.

Destination Index (DI) is a 16-bit register. Dl is used for indexed, based indexed and
register indirect addressing, as well as a destination data address in string
manipulation instructions.

Other registers:
Instruction Pointer (IP) is a 16-bit register.

Flags is a 16-bit register containing 9 one bit flags.

Overflow Flag (OF) - set if the result is too large positive number, or is too small
negative number to fit into destination operand.

Direction Flag (DF) - if set then string manipulation instructions will auto-
decrement index registers. If cleared then the index registers will be auto-
incremented.

Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.

Single-step Flag (TF) - if set then single-step interrupt will occur after the next
instruction.

Sign Flag (SF) - set if the most significant bit of the result is set.
Zero Flag (ZF) - set if the result is zero

Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the
AL register.

Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the
result is even.

Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit
during last result calculation.

Addressing Modes

Implied - the data value/data address is implicitly associated with the instruction.
Register - references the data in a register or in a register pair.

Immediate - the data is provided in the instruction.

Direct - the instruction operand specifies the memory address where data is
located.

Register indirect - instruction specifies a register containing an address, where
data is located. This addressing mode works with SI, DI, BX and BP registers.

Based :- 8-bit or 16-bit instruction operand is added to the contents of a base
register (BX or BP), the resulting value is a pointer to location where data resides.

Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an index
register (Sl or DI), the resulting value is a pointer to location where data resides.

Based Indexed :- the contents of a base register (BX or BP) is added to the contents
of an index register (Sl or DI), the resulting value is a pointer to location where
data resides.

Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to
the contents of a base register (BX or BP) and index register (Sl or DI), the resulting
valueis a pointer to location where data resides.

Interrupts
The processor has the following interrupts:

INTRis a maskable hardware interrupt. The interrupt can be enabled/disabled
using STI/CLI instructions or using more complicated method of updating the
FLAGS register with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS register into stack, disables
further interrupts, fetches from the bus one byte representing interrupt type, and
jumps to interrupt processing routine address of which is stored in location 4 *
<interrupt type>. Interrupt processing routine should return with the IRET
instruction.

NMlis a non-maskable interrupt. Interrupt is processed in the same way as the
INTR interrupt. Interrupt type of the NMl is 2, i.e. the address of the NMI processing
routine is stored in location 0008h. This interrupt has higher priority then the
maskable interrupt.

Software interrupts can be caused by:

INT instruction - breakpoint interrupt. This is a type 3 interrupt.

INT <interrupt number> instruction - any one interrupt from available 256

interrupts. INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt.
When the CPU processes this interrupt it clears TF flag before calling the interrupt
processing routine.

Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape

opcode (type 7).

Software interrupt processing is the same as for the hardware interrupts.

The figure below shows the 256 interrupt vectors arranged in the interrupt vector
table in the memory.

fddress

HOEFM Typa FEH vacior (2vailable)

Frraileble inam ']
'.-Eu-:l:-'s-lzz-'ll-l:J DO3FCH | ——
Toped 21H sacior (avpilabis) |
!) Type 20H vector (availabia)
- oo e
Tisgee: 1FH wnclor reserved)
Reseresd nlemupl . I —
vk (271 i]
DODIAH | Type O5H wecior jresanved|
BOa10H Trpe (4H vecinr {overfics!
Cedcled - il iepici]
irfamapl . Toppe D3 vieachion I
wactors (8) 0000CH [1-trpte INT instruclion}
o e 1
O0008H Type 02H wedar (MK |
OO00TH Type H vecir |
| BOO04H (Trap or single stept |
' C5 | 00]
e L D000 Type (IH weckor
I P E—— o001k I (Draite-by- ot |
L 00000H
B e

Interrupt Vector Table in the 8086
Minimum Mode Interface

When the Minimum mode operation is selected, the 8086 provides all control
signals needed to implement the memory and I/0 interface. The minimum mode
signal can be divided into the following basic groups : address/data bus, status,
control, interrupt and DMA.

Address/Data Bus : these lines serve two functions. As an address bus is 20 bits
long and consists of signal lines A0 through A19. A19 represents the MSB and AO
LSB. A 20bit address gives the 8086 a 1Mbyte memory address space. More over
it has an independent 1/0 address space which is 64K bytes in length.

The 16 data bus lines DO through D15 are actually multiplexed with address lines
A0 through A15 respectively. By multiplexed we mean that the bus work as an
address bus

during first machine cycle and as a data bus during next machine cycles. D15 is
the MSB and DO LSB. When acting as a data bus, they carry read/write data for

memory, input/output data for I/0 devices, and interrupt type codes from an
interrupt controller.

l|:rI Grn
ISTR L
, | N Al -AnS,
Tt pa " -"-.. A rean Tdars s
minrlacs
TEET
A .
i S Dy,
jud]) 4
Er]
RESET " MU =
= FHETS,
= GLIgLY N[t
DALy HOLD = DI 1k pom s
S = b
= Tk
YeE
=« TOE%
Blwde pebein
. READY
NS T
CLE discke

Block Dhiagram of the Minimum Mode 8086 MPU

Status signal : The four most significant address lines A19 through A16 are also
multiplexed but in this case with status signals S6 through S3. These status bits
are output on the bus at the same time that data are transferred over the other
bus lines. Bit S4 and S3 together from a 2 bit binary code that identifies which of
the 8086 internal segment registers are used to generate the physical address
that was output on the address bus during the current bus cycle. Code S4S3 = 00

identifies a register known as extra segment register as the source of the segment
address.

5y 5 Sepmeent Regisier
0] Exrra

i 1 Sewck

1 il el /' moamiie

1 1 Dt

Memory segment status code

Status line S5 reflects the status of another internal characteristic of the 8086. It is

the logic level of the internal enable flag. The last status bit S6 is always at the
logic O level.

Control Signals : The control signals are provided to support the 8086 memory 1/0
interfaces. They control functions such as when the bus is to carry a valid address
in which direction data are to be transferred over the bus, when valid write data
are on the bus and when to put read data on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a valid address word
is on the bus. This address must be latched in external circuitry on the 1-to-0 edge
of the pulse at ALE.

Another control signal that is produced during the bus cycle is BHE bank high
enable. Logic 0 on this used as a memory enable signal for the most significant
byte half of the data bus D8 through D1. These lines also serves a second
function, which is as the S7 status line.

Using the M/10 and DT/R lines, the 8086 signals which type of bus cycleis in
progress and in which direction data are to be transferred over the bus.

The logic level of M/IO tells external circuitry whether a memory or I/0 transfer is
taking place over the bus. Logic 1 at this output signals a memory operation and
logic 0 an

I/0 operation.

The direction of data transfer over the bus is 74ignallin by the logic level output at
DT/R. When this lineis logic 1 during the data transfer part of a bus cycle, the bus
is in the transmit mode. Therefore, data are either written into memory or output
to an 1/0 device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This
corresponds to reading data from memory or input of data from an input port.

The signal read RD and write WR indicates that a read bus cycle or a write bus
cycleisin progress. The 8086 switches WR to logic 0 to signal external device that
valid write or output data are on the bus.

On the other hand, RD indicates that the 8086 is performing a read of data of the
bus. During read operations, one other control signal is also supplied. This is DEN
(data enable) and it signals external devices when they should put data on the
bus.

There is one other control signal that is involved with the memory and I/0 interface.
This is the READY signal.

READY signal is used to insert wait states into the bus cycle such that it is
extended by a number of clock periods. This signal is provided by an external
clock generator device and can be supplied by the memory or I/0 sub- system to
signal the 8086 when they are ready to permit the data transfer to be completed.

Maximum Mode Interface

When the 8086 is set for the maximum-mode configuration, it provides signals for
implementing a multiprocessor / coprocessor system environment. By
multiprocessor environment we mean that one microprocessor exists in the
system and that each processor is executing its own program. Usually in this type
of system environment, there are some system resources that are common to all
processors. They are called as global resources. There are also other resources
that are assigned to specific processors. These are known as local or private
resources. Coprocessor also means that there is a second processor in the system.
In this two processor does not access the bus at the same time. One passes the
control of the system bus to the other and then may suspend its operation. In the
maximum- mode 8086 system, facilities are provided for implementing allocation
of global resources and passing bus control to other microprocessor or
COprocessor.

8288 Bus Controller — Bus Command and Control Signals: 8086 does not directly
provide all the signals that are required to control the memory, I/0 and interrupt
interfaces. Specially the WR, M/10, DT/R, DEN, ALE and INTA, signals are no longer
produced by the 8086. Instead it outputs three status signals S0, S1, S2 prior to
the initiation of each bus cycle. This 3- bit bus status code identifies which type of
bus cycle is to follow. S2S1S0 are input to the external bus controller device, the
bus controller generates the appropriately timed command and control signals.

Maximum Mode Interface (cont..)

Status Impuis CPU Cydles -

5;. E'-I 5,:, Command

0 0 0 Imterrapt Ackmowledge | o

0 LI} | Fead 'O Fort IOEC

0 1 0 Write 1'0 Port [OWT, AIOWC
il i i Halt Mome

1 0 i Imstruction Feich MRDC

1 Ll 1 R i MLemmmiy NIRIFC

1 1 0 Write Memory MWTC, AMWT
1 1 1 Passive Nome

Bus Stames Codes

The 8288 produces one or two of these eight command signals for each b us
cycles. For instance, when the 8086 outputs the code S2S1S0 equals 001, it
indicates that an I[/O read cycleis to be performed. In the code 111 is output by
the 8086, it is 75ignalling that no bus activity is to take place.

The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals
provide the same functions as those described for the minimum system mode.
This set of bus commands and control signals is compatible with the Multibus
and industry standard for interfacing microprocessor systems.

8289 Bus Arbiter — Bus Arbitration and Lock Signals:

This device permits processors to reside on the system bus. It does this by
implementing the Multibus arbitration protocol in an 8086-based system.
Addition of the 8288 bus controller and 8289 bus arbiter frees a number of the
8086 pins for use to produce control signals that are needed to support multiple
processors. Bus priority lock (LOCK) is one of these signals. It is input to the bus
arbiter together with status signals S0 through S2.

Queue Status Signals: Two new signals that are produced by the 8086 in the
maximum- mode system are queue status outputs QSO and QS1. Together they
form a 2-bit queue status code, QS1QS0. Following table shows the four different
queue status.

Q5 05, Dueae Statas

i lowy | 0 Mo Operation. During the last clock cyele, nothing was
taken from the guene.

i 1 | First Bvte. The byte faken from the quens was the first
byte of the instroetion.,

1ikkgh) | p | Quese Empiy. The guese has been refnitkalized as a result
of the execution of a transfer instroction.

Subseanent Byvie. The byvte taken from the anene was a
subsequent byte of the instraciion.

Cuicue status codes

QUESTIONS:

—_—

. What is the size of address and data bus in the 8086?

2. Draw theregister organization of the 8086 and explain typical applications
of each register.

3. How is the 20-bit physical memory address calculated in the 8086
processor?

4. Write the different memory segments used in the 8086 and their functions.

5. Write the function of the DF, IF and TF bits in the 8086.

6. The content of the different registers in the 8086 is CS = FOOOH, DS = 1000H,
SS = 2000H and ES = 3000H. Find the base address of the different
segments in the memory.

7. What is the difference between the minimum and maximum mode
operation of the 8086?

8. What is meant by DMA operation? Which pins of the 8086 are used to
perform the DMA operation in the minimum and maximum modes of the
80867

9. Explain the architecture of the 8086 with a neat functional block diagram.

10.Explain the function of different flags in the 8086.

11.What is the function of segment override prefix? Give two examples.

12.What is the difference between inter-segment and intra-segment jump in the
80867

13.What is the difference between short and near jump in the 8086?

14.What are the different uses of stack in a microprocessor?

15.What is the difference between the MUL and IMUL instructions in the 80867

16.What is the difference between the DIV and IDIV instructions in the 80867?

17.What is the function of DAA instruction in the 80867

18.Write the operations performed when the instruction AAD is executed in the
8086.

19.What is the difference between maskable and non-maskable interrupts?

20.What is the difference between hardware and software interrupts?

21.What is an interrupt vector? What is the maximum number of interrupt
vectors that can be stored in the IVT of the 80867

22.Write a program to move a word string 200 bytes (i.e. 100 words) long from
the offset address 1000H to the offset address 3000H in the segment
5000H.

23.Write a program to find the smallest word in an array of 100 words stored
sequentially in the memory; starting at the offset address 1000H in the
segment address 5000H. Store the result at the offset address 2000H in
the same segment.

24 Write a program to add the two BCD data 29H and 98H and store the result

in BCD form in the memory locations 2000H: 3000H and 2000H: 3001H.

MODULE: 4

8051 microcontroller

What is a Microcontroller?

A Microcontroller is a programmable digital processor with necessary
peripherals. Both microcontrollers and microprocessors are complex
sequential digital circuits meant to carry out job according to the program /
instructions. Sometimes analog input/output interface makes a part of
microcontroller circuit of mixed mode(both analog and digital nature).

Microcontrollers Vs Microprocessors

1.

2.

3.

A microprocessor requires an external memory for program/data
storage. Instruction execution requires movement of data from the
external memory to the microprocessor or vice versa. Usually,
microprocessors have good computing power and they have higher
clock speed to facilitate faster computation.

A microcontroller has required on-chip memory with associated
peripherals. A microcontroller can be thought of a microprocessor with
inbuilt peripherals.

A microcontroller does not require much additional interfacing ICs for
operation and it functions as a stand alone system. The operation of a
microcontroller is multipurpose, just like a Swiss knife.
Microcontrollers are also called embedded controllers. A
microcontroller clock speed is limited only to a few tens of MHz.
Microcontrollers are numerous and many of them are application
specific.

Development/Classification of microcontrollers (Invisible)

Microcontrollers have gone through a silent evolution (invisible). The evolution
can be rightly termed as silent as the impact or application of a
microcontroller is not well known to a common user, although microcontroller
technology has wpggraone signifisar(2sbarreon caearly 0 HQys:
Development of some popular rikigejcontrollers is given as follows.

Intel 8048 8 bit 1976
Intel 8031 8 bit (ROM-less) :
Intel 8051 8 bit (Mask ROM) 1980
Microchip PIC16C64 8 bit 1985
Motorola 68HC11 |8 bit (on chip ADC) :
Intel 80C196 16 bit 1982
Atmel AT89C51 8 bit (Flash memory)

Microchip PIC 8 bit (Flash memory + ADC) .

16F877

Development of microprocessors (Visible)

Microprocessors have undergone significant evolution over the past four
decades. This development is clearly perceptible to a common user,
especially, in terms of phenomenal growth in capabilities of personal
computers. Development of some of the microprocessors can be given as

followsIntel 4004 4 bit (2300 PMOS transistors)1971
Intel 80808 bit (NMOS) 1974
80858 bit
Intel 808816 b?t 1978
808616 bit
Intel 8018616 b?t 1982
8028616 bit
Intel 80386 32 bit (275000 transistors) 1985
32 bit
Intel 80486 |§§ 32 bit (built in floating point 1989
unit)
Intel 80586 | MMX
Celeron 1993
" v 1999
2000
Z-80 (Zilog) 8 bit 1976
Motorola Power PC
601 32-bit 1993
602 1995
603

We use more number of microcontrollers compared to microprocessors.
Microprocessors

are primarily used for computational purpose, whereas microcontrollers find wide
application in devices needing real time processing / control.

Application of microcontrollers are numerous. Starting from domestic applications
such as in washing machines, TVs, airconditioners, microcontrollers are used in
automobiles, process control industries, cell phones, electrical drives, robotics and
in space applications.

Microcontroller Chips

Broad Classification of different microcontroller chips could be as follows:

» Embedded (Self -Contained) 8 - bit Microcontroller
e 16 to 32 Microcontrollers
e Digital Signal Processors

Features of Modern Microcontrollers

e Built-in Monitor Program
e Built-in Program Memory
e Interrupts

e Analogl/O

e Serial I/0

» Facility to Interface External Memory
e Timers

Internal Structure of a Microcontroller

Power
= Power Control
Distribution Store
ROM
Reseat
5 Reset + Control
ALU
+ fia]
Register P
Q0
R
T
Clocking Clock & s
E—— timing
External
Intermupts Peripherals
— Interrupt
Circuits
Intarmal
RAM

110 pins

Fig. 4.1 Internal Structure of a Microcontroller

At times, a microcontroller can have external memory also (if there is no internal
memory or extra memory interface is required). Early microcontrollers were
manufactured using bipolar or NMOS technologies. Most modern
microcontrollers are manufactured with CMOS technology, which leads to
reduction in size and power loss. Current drawn by the IC is also reduced
considerably from 10mA to a few micro Amperes in sleep mode(for a
microcontroller running typically at a clock speed of 20MH2z).

Harvard Architecture (Separate Program and Data Memory interfaces)

ohta ,, R
— |
= Instruction I
Decoder :
i
Coptrol I :
Program |h | Rseglstefr
ROM I I pace,
I Data
: PC Stack | METT‘IBF:.I'
| | RAM
I Dala
| (—
I Processor
[& rgss
I Register I
: Interface I
| Confrol
e e e e e |
CPU

Fig. 4.2 Harvard Arcitecture

The same instruction (as shown under Princeton Architecture) would be executed
as follows:

Cycle 1
- Complete previous instruction
- Read the "Move Data to Accumulator” instruction

Cycle 2

- Execute "Move Data to Accumulator” instruction

- Read next instruction

Hence each instruction is effectively executed in one instruction cycle, except for
the ones

that modify the content of the program counter. For example, the "jump” (or call)
instructions takes 2 cycles. Thus, due to parallelism, Harvard architecture
executes more instructions in a given time compared to Princeton Architecture.

Memory organization:

In the 8051, the memory is organized logically into program memory and data
memory separately. The program memory is read-only type; the data memory is
organized as read- write memory. Again, both program and data memories can
be within the chip or outside.

Basic 8051 Architecture

The 8051 is an 8-bit microcontroller i.e. the data bus within and outside the chip is
eight bits wide. The address bus of the 8051 is 16-bit wide. So it can address 64 KB
of memory. The 8051 is a 40-pin chip as shown is figure below:

e e 4
IR 1T POOVOE
r, 2 Lo Lj?

[Lol :]] k. PILTAL
cemens s [Pzan

c=ap s [1s

TR
I O S B o

caPis 7 PR
cExs1? 8 1] PGS
RS [1% . RO
a0 Tt Eﬂg}:;t N Ewee

morat Ot peta W[A

e [2 PEEN
wne On Hl] mMS
farid O# ‘._,"I: P1&E®T
TS 15 ®[] Frswil
] T i S PRAAR
Wk N a‘ M pryad
Tz 0 B[rakn
Nt 1R 21 PLYAE
W '-_-IE Nl Faow

Fig 4.3 Pin details of 8051

8051 employs Harvard architecture. It has some peripherals such as 32 bit digital I/
0. Timers and Serial I/0. The basic architecture of 8051 is aiven in fiq 4.4.

Data memary /

Register File
Q0H
00oH 16 _/ _
Program a-hit
counter Databus
Program SFRl
memaory 7FH
8 BOH
- ED
8 ACT
DOH——pmm
FFFH \/ AFH
ALL
2]
8
Instruction ’
decode v

Fig 4.4 : Basic 8051 Architecture

Various features of 8051 microcontroller are given as follows.
o 8-hitCPU
e 16-bit Program Counter
o 8-bit Processor Status Word (PSW)
e 8-bit Stack Pointer
Internal RAM of 128bytes
Special Function Registers (SFRs) of 128 bytes
32 1/0 pins arranged as four 8-bit ports (PO - P3)
Two 16-bit timer/counters : TO and T1
Two external and three internal vectored interrupts
e One full duplex serial I/0

8051 Clock and Instruction Cycle
In 8051, one instruction cycle consists of twelve (12) clock cycles. Instruction

cycleis sometimes called as Machine cycle by some authors.
Pf P2 P1 P2 P1 P2 P1 PZ P1 P2 Pl P2

pupupupbbpuL

[I I I I |
5y [Sa | Sy | Ss | Ss | S |
J

COne Instruction Cycle |

Fig 4.5 : Instruction cycle of 8051
In 8051, each instruction cycle has six states (S ;- S). Each state has two pulses
(P1and P2)

|
|
ke
I

128 bytes of Internal RAM Structure (lower address space)

7FH
General T
Purpose B0 byles
Area
30H
2FH Bit 16 _

Addrass Mo, of Bits = 16 x 8 = 128
20H Area bﬂﬁ: Bit address 00H - 7FH
1FH Register

Bank-3
18H
17TH

Regqister
10H Bank-2
OFH

Register 32 byles = B x 4 byes
08H Bank-1
OTHE——— Ri _]

Register

Bank-0
poE———RO™ — —]

Fig 4.6: Internal RAM Structure
The lower 32 bytes are divided into 4 separate banks. Each register bank has 8
registers of one byte each. A register bank is selected depending upon two bank
select bits in the PSW register. Next 16bytes are bit addressable. In total, 128bits
(16X8) are available in
bitaddressable area. Each bit can be accessed and modified by suitable
instructions. The bit addresses are from 00H (LSB of the first byte in 20H) to 7FH
(MSB of the last byte in 2FH). Remaining 80bytes of RAM are available for general

burpose. RAM Area) SFRs
Internal Data MemaTy and Special Functio
I Indirect Direst Addressing
| Addressing SFERs
|
80H !
7FH
Direct /
Indirect
Addrassing
00H

Fig 4.6 : Internal Data Memory Map
The special function registers (SFRs) are mapped in the upper 128 bytes of internal
data memory address. Hence there is an address overlap between the upper 128
bytes of data RAM and SFRs. Please note that the upper 128 bytes of data RAM are
present only in the 8052 family. The lower128 bytes of RAM (00H - 7FH) can be
accessed both by direct or indirect addressing while the upper 128 bytes of RAM
(80H - FFH) are accessed by indirect addressing.The SFRs (80H - FFH) are
accessed by direct addressing only. This feature distinguishes the upper 128 bytes
of memory from the SFRs, as shown in fiq 4.6.

SFR Map
The set of Special Function Registers (SFRs) contains important registers such
as Accumulator, Register B, I/0 Port latch registers, Stack pointer, Data Pointer,
Processor Status Word (PSW) and various control registers. Some of these
registers are bit addressable (they are marked with a * in the diagram below).
The detailed map of various registers is shown in the following figure.
Address

F8H

FOH |B*

E8H

EOH ACC*

D8H

DOH PSW*

C8H|(T2CON)* (RCAP2L) (RCAP2H)/(TL2) (TH2)

COH

B8H |IP*

BOH P3*

A8H IE*

AOH |P2*

98H |SCON* | SBUF

90H P1*

88H TCON* | TMOD TLO TL1 THO | TH1

80H PO* SP DPL DPH PCON
Fig 4.7: SFR Map

It should be noted hat all registers appearing in the first column are bit
addressable. The bit address of a bit in the register is calculated as follows.
Bit address of 'b' bit of register 'R'is

Address of register' R'+b where0<b<7
Processor Status Word (PSW) Address=DOH

CY | AC | FO | RS1| RS0 | OV - P

Fi g 4.8: Processor Status Word

PSW register stores the important status conditions of the microcontroller. It also
stores the bank select bits (RS1 & RS0) for register bank selection.

Interfacing External Memory
If external program/data memory are to be interfaced, they are interfaced in the
followina way.

8 Data SRAM (Data memory)

/
POK’ f,-’ " Data
L
K. A AD‘A?
v T)
AL c fr" A Add
H Ap-Aas
P2 ,-’f " Add
/ ,DE WR
_ 0"’""’#— T
RD
WR
J— R EPROM (Program mermio
—3 EA PSE Data , B (Prog ry}
i 4 Data
16
Au—Ami:} Add
OE

Fig 4.9: Circuit Diagram for Interfacing of External Memory
External program memory is fetched if either of the following two conditions are
satisfied.

1. = gEnabIe Address) is low. The microcontroller by default starts searching
for program from external program memory.

2. PCishigherthan FFFH for 8051 or TFFFH for 8052.

PSENtells the outside world whether the external memory fetched is program
memory or dEA3 memory. is us¢PSEN|figurable. is processor controlled.
8051 Addressing Modes

8051 has four addressing modes.

1. Immediate Addressing :
Data is immediately available in the instruction. For example -

ADD A, #77; Adds 77 (decimal) to A and stores in A

ADD A, #4DH; Adds 4D (hexadecimal) to A and stores in A MOV DPTR, #1000H;
Moves 1000 (hexadecimal) to data pointer

2. Bank Addressing or Register Addressing :

This way of addressing accesses the bytes in the current register bank. Data is
available in the register specified in the instruction. The register bank is decided
by 2 bits of Processor Status Word (PSW).

For example-

ADD A, RO; Adds content of RO to A and stores in A

3.. Direct Addressing :
The address of the data is available in the instruction. For example -

MOV A, 088H; Moves content of SFR TCON (address 088H)to A

4. Register Indirect Addressing :
The address of data is available in the RO or R1 registers as specified in the
instruction. For example -

MOV A, @R0O moves content of address pointed by RO to A

External Data Addressing :

Pointer used for external data addressing can be either RO/R1 (256 byte access) or
DPTR (64kbyte access).

For example -

MOVX A, @R0; Moves content of 8-bit address pointed by R0 to A MOVX A,

@DPTR; Moves content of 16-bit address pointed by DPTRto A

External Code Addressing :

Sometimes we may want to store non-volatile data into the ROM e.g. look-up
tables. Such data may require reading the code memory. This may be done as
follows -

MOVC A, @A+DPTR; Moves content of address pointed by A+DPTRto A MOVC A,

@A+PC; Moves content of address pointed by A+PCto A

I/0 Port Configuration
Each port of 8051 has bidirectional capability. Port 0 is called 'true bidirectional
port' as it floats (tristated) when configured as input. Port-1, 2, 3 are called 'quasi
bidirectional port'.
Port-0 Pin Structure
Read

oo
P Latch Addrass
Tl J/‘ Data Gontrol
! —D—iC
PiCr x
Int. = o ! o Fin
Bus POx
Write L Latch _"‘—‘—'ﬂo——|
latch
= o
Raad
Ehir

Fig 4.10: Port-0 Structure

Port-0 can be configured as a normal bidirectional I/0 port or it can be used for

address/data interfacing for accessing external memory. When control is '1', the
port is used for address/data interfacing. When the control is '0', the port can be
used as a normal bidirectional I/0 port.

Let us assume that control is '0'. When the port is used as an input port,'1'is
written to the latch. In this situation both the output MOSFETSs are 'off'. Hence the
output pin floats.

This high impedance pin can be pulled up or low by an external source. When the
port is used as an output port, a '1" written to the latch again turns 'off' both the
output MOSFETs and causes the output pin to float. An external pull-up is
required to output a '1'. But when '0' is written to the latch, the pin is pulled down
by the lower MOSFET. Hence the output becomes zero.

When the control is '1', address/data bus controls the output driver MOSFETs. If
the address/data bus (internal) is '0', the upper MOSFET is 'off' and the lower
MOSFET is 'on'. The output becomes '0'". If the address/data bus is '1', the upper
transistor is 'on' and the lower transistor is 'off'. Hence the output is "1'. Hence for
normal address/data interfacing (for external memory access) no pull-up
resistors are required.

Port-0 latch is written to with 1's when used for external memorv access.

Port-1 Pin Stru.fc:@ﬁre Ve
Port-1 has 8 pinsﬂj,ﬂ—m .7) .The structure of a port-1 pin is shown in fig 4.11.
\.I Internal
Pull-up
P1.x
Internal
Bus D Pi.x o]
) Latch
Write [—
Iab.'I:h Q “:N

\/Ij
Read
pin

Fig 4.11 Port 1 Structure
Port-1 does not have any alternate function i.e. it is dedicated solely for 1/0
interfacing. When used as output port, the pin is pulled up or down through
internal pull-up. To use port-1 as input port, 1" has to be written to the latch. In
this input mode when '1" is written to the pin by the external device then it read
fine. But when '0' is written to the pin by the external device then the external
source must sink current due to internal pull-up. If the external device is not able
to sink the current the pin voltage may rise, leadina to a possible wrona readina.

PORT 2 Pin Structure
Port-2 has 8-pins (P2.0-P2.7) . The structure of a port-2 pin is shown in fig 4.12.

Raad Gontrol

Address Wio
LEIU/‘

l Internal

Full-up
Internal -
Bus | L P2.x 9 VDB\L__.- -
Winile - Lalch _l ::n_l Y]
lIatch

/

P2.x
Fin

Rqad
[yl
Fig 4.12 Port 2 Structure

Port-2 is used for higher external address byte or a normal input/output port. The
I/0 operation is similar to Port-1. Port-2 latch remains stable when Port-2 pin are
used for external memory access. Here again due to internal pull-up there is
limited current drivina capability.
PORT 3 Pin Structure
Port-3 has 8 pin (P3.0-P3.7) . Port-3 pins have alternate functions. The structure of

a port- 3 pin is shown in fig 4.13.
Raad Allarmata
Dutput Tunction

La tﬂ/‘
N |ntemal
Pull-up
Pa.x
Internal Fin
Bus | D F3.x Q

Wil Laich
latch i —_D_":”

/N

\ﬂ
F{gad
pr

Altarnatas
Inputl funclicn

Fia 4.13 Port 3 Structure
Each pin of Port-3 can be individually programmed for I/0 operation or for
alternate function. The alternate function can be activated only if the
corresponding latch has been

written to "1". To use the port as input port, "1’ should be written to the latch. This
port also has internal pull-up and limited current driving capability.
Alternate functions of Port-3 pins are -

P3.0| RxD
P3.1| TxD
P3.2 | nmo
P3.3 | |NTH
P3.4 T0

P3.5 T1

P3.6 WR
P3.7 | RD

Note:

1. Port1,2,3 each candrive4 LS TTL inputs.

2. Port-0 can drive 8 LS TTL inputs in address /data mode. For digital output
port, it needs external pull-up resistors.

3. Ports-1,2and 3 pins can also be driven by open-collector or open-drain
outputs.

4. Each Port 3 bit can be configured either as a normal I/0 or as a special
function bit.

Reading a port (port-pins) versus reading a latch
There is a subtle difference between reading a latch and reading the output port

pin.

The status of the output port pin is sometimes dependant on the connected load.
For instance if a port is configured as an output port and a '1"is written to the
latch, the output pin should also show '1'. If the output is used to drive the base
of a transistor, the transistor turns 'on'.

If the port pin is read, the value will be '0' which is corresponding to the base-
emitter voltage of the transistor.

Reading a latch: Usually the instructions that read the latch, read a value,
possibly change it, and then rewrite it to the latch. These are called "read-modify-
write" instructions.

Examples of a few instructions are- ORL P2, A; P2 <-P2 or A

MOV P2.1, C; Move carry bit to PX.Y bit.

In this the latch value of P2 is read, is modified such that P2.1 is the same as
Carry and is then written back to P2 latch.

Reading a Pin: Examples of a few instructions that read port pin, are-

MOV A, PO ; Move port-0 pin valuesto A MOV A, P1; Move port-1 pin values to A

Accessing external memory

Access to external program memory uses the s&i%dt (Program store enable) as

the AD of WR
read strobe. Access to external data memory uses (alternate function of P3.7
and P3.6).

For external proaram memory, alwavs 16 bit address is used. For example -
MOVC A, @ A+DPTR

MOVC A, @ A+PC

Access to external data memory can be either 8-bit address or 16-bit address -
8-bit address- MOVX A, @Rp where Rp is either RO or R1 MOVX @Rp, A

16 bit address- MOVX A, @DPTR MOV X @DPTR, A

The external memory access in 8051 can be shown by a schematic diagram as

given in fig
Diata Bus
4.14. /8
™ P i -
|— - .__/_ 1 Read /Writ.c Read
e
| & Reg !
| .
| | Movi @re ExtRAM Lot /Ext ROM
RO or R1]l ' !]
Imovi @prTr | -
| DFTR i
| A4DPTR i ~
e
| MOVC A@ A+DPTR
| A4PC . "
MOVC A@ A+FC
| |
1

Fig 4.14 Schematic diagram of external memory access
If an 8-bit external address is used for data memory (i.e. MOVX @Rp) then the
content of Port-2 SFR remains at Port-2 pins throughout the external memory
cvcle. This facilitates memory paaina as the upper 8 bit address remains fixed.
During any access to external memory, the CPU writes FFH to Port-0 latch (SFR). If
the
user writes to Port-0 during an external memory fetch, the incoming byte is
corrupted. Exterrgg program memory is accessed under the following condition.

1. Whenever is low, or
2. Whenever PC contains a number higher than OFFFH (for 8051) or 1FFF (for
8052).

Some typical use of code/program memory access:

External program memory can be not only used to store the code, but also for

lookup table
of various functions required for a particular application. Mathematical functions

such as Sine, Square root, Exponential, etc. can be stored in the program memory
(Internal or eternal) and these functions can be accessed using MOVC instruction.

Program Memory

Code

Lookup
table

Fig 4.15 Program memory showing the storage of lookup table

Timers / Counters

8051 has two 16-bit programmable UP timers/counters. They can be configured
to operate either as timers or as event counters. The names of the two counters
are TO and T1 respectively. The timer content is available in four 8-bit special
function registers, viz, TLO,THO,TLT and TH1 respectively.

In the "timer" function mode, the counter is incremented in every machine cycle.
Thus, one can think of it as counting machine cycles. Hence the clock rate is 1/12
th of the oscillator frequency.

In the "counter" function mode, the register is incremented in responsetoa 110 0
transition at its corresponding external input pin (TO or T1). It requires 2 machine
cycles to detect a high to low transition. Hence maximum count rate is 1/24 th of
oscillator frequency.

The operation of the timers/counters is controlled by two special function registers
TMOD and TCON respectively.

Timer Mode control (TMOD) Special Function Register:

TMOD reqister is not bit addressable.

TMOD

Address: 89 H

Grate | C/T | M1 DO| Gate) C/T | ML IO

| Timer-1 | Titmer-0 |

Various bits of TMOD are described as follows - L

Gate: This is an OR Gate enabled bit which controls the effef'6F on START/
STOP of Timer. It is set to one ('1') by the program to enable the interrupt to start/
stop the timer. If TR1/0in TCON is @Vg_ﬂ@nd signalon pinis high then the timer
starts counting using either internal clock (timer mode) or external pulses

(€[Ti3ter mode).

It is used for the selection of Counter/Timer mode.
Mode Select Bits:

M1 MO Maoie
0 1] hode O
0 1 hode 1
1] Mode 2
1 1 hode 3
M1 and MO are mode select bits.
Timer/ Counter control logic:
Osc freq] 12 Timer mode
CT=0
To Timer
; N /:/ stages
|
T10 CT=1 |
Input pin Counter mode |
I
TRAD bit |
in TCON "‘\l |
Gate bit

in TMOD
INT1/0

input pin
Fig 4.16 Timer/Counter Control Logic
Timer control (TCON) Special function register:
TCON is bit addressable. The address of TCON is 88H. It is partly related to Timer
and partly to interrupt.

132 10
[T 1|[TRATFO[TRO|IE1|IT1]1E0|ITO|

I Timer I Interrupt —:J-I

Fig 4.17 TCON Register

The various bits of TCON are as follows.

TF1 : Timer1 overflow flag. It is set when timer rolls from all 1s to Os. It is cleared
when processor vectors to execute ISR located at address 001BH.

TR1 : Timer1 run control bit. Set to 1 to start the timer / counter. TFO : TimerO
overflow flag. (Similar to TF1)

TRO : Timer0 run control bit.

IET : Interrupt1 edge flag. Set by hardware when an external interrupt edge is
detected. It is cleared when interrupt is processed.

IEQ : Interrupt0 edge flag. (Similar to IET)

IT1 : Interrupt1 type control bit. Set/ cleared by software to specify falling edge /
low level triggered external interrupt.

ITO : InterruptO type control bit. (Similar to IT1)

As mentioned earlier, Timers can operate in four different modes. They are as
follows

Timer Mode-0:

In this mode, the timer is used as a 13-bit UP counter as follows.

———={TLX 5bits (Lower) THX 8bits TEx | Merrupt
Input pulse —

From previous
stage

Fig. 4.18 Operation of Timer on Mode-0
The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.Upper 3 bits
of TLX are ignored. When the counter rolls over from all O's to all 1's, TFX flag is
set and an interrupt is generated.
The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and Gate bit
is 0, the counter continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then the
operation of the count¥is controlled by input. This mode is useful to measure the
width of a ¢Wén pulse fed to input.
Timer Mode-1:
This mode is similar to mode-0 except for the fact that the Timer operates in 16-bit
mode.

—=« TLX 8bits THX 8hits TEX Interrupt

Input pulse
From previous
stage

Fig 4.19 Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode)

This is a 8 bit counter/timer operation. Counting is performed in TLX while THX
stores a constant value. In this mode when the timer overflows i.e. TLX becomes
FFH, it is fed with the value stored in THX. For example if we load THX with 50H
then the timer in mode 2 will count from 50H to FFH. After that 50H is again
reloaded. This mode is useful in applications like fixed time sampling.

Interrupt
—= TLX 8bits TFX |———
Input pulse

From previous
stage

THX Bbits
Fig 4.20 Operation of Timer in Mode 2

Timer Mode-3:

Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.
Timer0 in mode-3 establishes TLO and THO as two separate counters.
Interrupt

i TLO 8bits T
Input pulse

From previous
stage

Interrupt
fi12 —f—=] THO 8bits ™ —=
I

TR1 bit in TCON

Fia 4.21 Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (THO) in Mode-3
while TRO and TFO are available to Timer-0 lower 8 bits(TLO).

Interrupts
8051 provides 5 vectored interrupts. They are -
1. INTD
2.TFO
3. INTT
4. TF1
5. RI/TI

Out of thesejnTand iwTare external interrupts whereas Timer and Serial port
interrupts are generated internally. The external interrupts could be negative edge
triggered or low level triggered. All these interrupt, when activated, set the
corresponding interrupt flags.

Except for serial interrupt, the interrupt flags are cleared when the processor
branches to the Interrupt Service Routine (ISR). The external interrupt flags are
cleared on branching to Interrupt Service Routine (ISR), provided the interrupt is
negative edge triggered. For low level triggered external interrupt as well as for
serial interrupt, the corresponding flags have to be cleared by software by the
programmer.

The schematic representation of the interrupts is as follows -

Interrupt ~~

| Vector'ocation
] 0 x
] IED 0003H
/1
o \—1—
TFO > O00BH
[=
— 0
T 1 P
| IE 0013H
o
= R
TF1 > 0O01BH
TI
o D > O023H

Fig 4.22 8051 Interrupt Details

Each of these interrupts can be individually enabled or disabled by 'setting' or
'clearing' the

corresponding bit in the IE (Interrupt Enable Register) SFR. IE contains a global
enable bit EA which enables/disables all interrupts at once.

Interrupt Enable regisiiar (IE: Adifraga: £844 3 2 1 0
EA | — |€Er2 | Es | Em [Ex1 | ET0 | Exo |

—NT0
EXO0 interrupt (External) enable bit
T
ETO Timer-0 interrupt enable bit
—*NTT
EX1 interrupt (External) enable bit
—_—
ET1 Timer-1 interrupt enable bit
T
ES Serial port interrupt enable bit
—_—
ET2 Timer-2 interrupt enable bit
S
EA Enable/Disable all
T
Setting '1' Enable the corresponding interrupt
—_—

Setting '0' Disable the corresponding interrupt
Priority level structure:

Each interrupt source can be programmed to have one of the two priority levels by
setting (high priority) or clearing (low priority) a bit in the IP (Interrupt Priority)
Register . A low

priority interrupt can itself be interrupted by a high priority interrupt, but not by
another low priority interrupt. If two interrupts of different priority levels are received
simultaneously, the request of higher priority level is served. If the requests of the
same priority level are received simultaneously, an internal polling sequence
determines which request is3¥BE serviced Eriritydevieln each priority level, there is a
second priority level determiﬁrﬁﬁ%ﬁ by the polling Higdestnce, as follows.

IE1
TF1
RI+TI Lowest
Interrupt Priority rqistergIP) 5 4 3 2 1 0

—— | —— | PT2 | PS | PT1 | PX1 | PTO | PX0

0" low priority high priority

e
Interrupt handling:
The interrupt flags are sampled at P2 of S5 of every instruction cycle (Note that
every instruction cycle has six states each consisting of P1 and P2 pulses). The
samples are polled

during the next machine cycle (or instruction cycle). If one of the flags was set at
S5P2 of the preceding instruction cycle, the polling detects it and the interrupt
process generates a long call (LCALL) to the appropriate vector location of the
interrupt. The LCALL is generated provided this hardware generated LCALL is not
blocked by any one of the following conditions.

1. Aninterrupt of equal or higher priority level is already in progress.

2. The current polling cycle is not the final cycle in the execution of the

instruction in progress.
3. Theinstruction in progress is RETI or any write to IE or IP registers.

When an interrupt comes and the program is directed to the interrupt vector
address, the Program Counter (PC) value of the interrupted program is stored
(pushed) on the stack. The required Interrupt Service Routine (ISR) is executed. At
the end of the ISR, the instruction RETI returns the value of the PC from the stack
and the originally interrupted program is resumed.

Reset is a non-maskable interrupt. A reset is accomplished by holding the RST pin
high for at least two machine cycles. On resetting the program starts from 0000H
and some flags are modified as follows -

Register ~ Value(Hex) on

Reset
PC 0000H
DPTR 0000H
A 00H
B 00H
SP 07H
PSW 00H
Ports P0-3 FEH
Latches
IP XXX 00000 b
IE 0 XX 00000 b
TCON 00H
TMOD 00H
THO 00H
TLO 00H
TH1 00H
TL1 00H
SCON 00H
SBUF XX H

PCON | O XXXX XXX
b

The schematic diagram of the detection and processing of interrupts is given as
follows. —

Instruction Cycles
| IC1 | Iz Ic: IC4 | 15

|
| | | | | |
Intermupt Servics
Foutine 15
LCALL to mntemmpt arcessed
Internipt is Int. is vector address

activated latched Latched

interrupts are

polled

Fig 4.23 Interrupt Handling in 8051
It should be noted that the interrupt which is blocked due to the three conditions
mentioned
before is not remembered unless the flag that generated interrupt is not still active
when the above blocking conditions are removed, i.e. .every polling cvcle is new.
Jump and Call Instructions
There are 3 types of jump instructions. They are:-

1. Relative Jump
2. Short Absolute Jump
3. Long Absolute Jump

Relative Jump

Jump that replaces the PC (program counter) content with a new address that
is greater

than (the address following the jump instruction by 127 or less) or less than
(the address following the jump by 128 or less) is called a relative jump.
Schematically, the relatiye jumptcan be shown as follows: -

128
Relativg Jump instruction
Jump Next LOX X XXX
range Instruction
127

Fig 4.24 Relative Jump
The advantages of the relative jump are as follows:-
1. Only 1 byte of jump address needs to be specified in the 2's complement
form, ie. For jumping ahead, therangeis 0 to 127 and for jumping back,
theranaeis -

110 -128.

2. Specifying only one byte reduces the size of the instruction and
speeds up program execution.

3. The program with relative jumps can be relocated without
reassembling to generate absolute jump addresses.

Disadvantages of the absolute jump: -

1. Short jump range (-128 to 127 from the instruction following the jump
instruction)

Instructions that use Relative Jump SJMP <relative address>

(The remaining relative jumps are conditional jumps) JC <relative address>
JNC <relative address>

JB bit, <relative address> JNB bit, <relative address> JBC bit, <relative
address>

CJNE <destination byte>, <source byte>, <relative address> DJNZ <byte>,
<relative address>

JZ <relative address> JNZ <relative address>

Short Absolute Jump

In this case only 11bits of the absolute jump address are needed. The
absolute jump address is calculated in the following manner.

In 8051, 64 kbyte of program memory space is divided into 32 pages of 2
kbyte each. The hexadecimal addresses of the pages are given as follows:-

Page | Address (Hex)

(Hex)
00 0000 - O7FF
01 0800 - OFFF
02 1000 -17FF
03 1800 - 1FFF
1E FO0O - F7FF
1F F800 - FFFF

It can be seen that the upper 5bits of the program counter(PC) hold the
page number and the lower 11bits of the PC hold the address within that
page. Thus, an absolute address is formed by taking page numbers of the
instruction (from the program counter) following the jump and attaching
the specified 11bits to it to form the 16-bit address.

Advantage: The instruction length becomes 2 bytes.

However, difficulty is encountered when the next instruction following the
jump instruction begins from a fresh page (at X000H or at X800H). This
does not give any

problem for the forward jump, but results in an error for the backward jump. In
such a

case the assembler prompts the user to relocate the program suitably.
Example of short absolute jump: -

ACALL <address 11>

AJMP <address 11>

Long Absolute Jump/Call

Applications that need to access the entire program memory from 0000H to
FFFFH use long absolute jump. Since the absolute address has to be specified
in the op-code, the instruction length is 3 bytes (except for JMP @ A+DPTR).
This jump is not re- locatable.

Example: -

LCALL <address 16>
LUMP <address 16> JMP @A+DPTR

Serial Interface
The serial port of 8051 is full duplex, i.e., it can transmit and receive
simultaneously.

The register SBUF is used to hold the data. The special function register SBUF
is physically two registers. One is, write-only and is used to hold data to be
transmitted out of the 8051 via TXD. The other is, read-only and holds the
received data from external sources via RXD. Both mutually exclusive
reqisters have the same address 099H.

Serial Port Control Register (SCON)

Register SCON controls serial data communication. Address: 098H (Bit

addressable) smm | ssu | sz | REN | TB | EBS vt RI

Mode select bits

SMo SM1 Made
0 0 Mode D
0 1 Mode 1

1 0 Mode 2
1 1 Mode 3

SM2: multi processor communication bit REN: Receive enable bit

TB8: Transmitted bit 8 (Normally we have 0-7 bits transmitted/received) RBS:
Received bit 8

Tl: Transmit interrupt flag RI: Receive interrupt flag

Power Mode control Register

Register PCON controls processor powerdown, sleep modes and serial data
bandrate. Only one bit of PCON is used with respect to serial communication.
The seventh bit (b7)(SMOD) is used to generate the baud rate of serial
communication.

Address: 87H
b7 b

SMOD — — — GF1 GF FD IDL

SMOD: Serial baud rate modify bit GF1: General purpose user flag bit 1T GFO:
General purpose user flag bit 0 PD: Power down bit

IDL: Idle mode bit

Data Transmission

Transmission of serial data begins at any time when data is written to SBUF.
Pin P3.1 (Alternate function bit TXD) is used to transmit data to the serial
data network. Tl is setto 1 when data has been transmitted. This signifies that
SBUF is empty so that another byte can be sent.

Data Reception

Reception of serial data begins if the receive enable bit is set to 1 for all modes.
Pin P3.0 (Alternate function bit RXD) is used to receive data from the serial
data network. Receive interrupt flag, R|, is set after the data has been received
in all modes. The data aqets stored in SBUF reaister from where it can be read.
Serial Data Transmission Modes:

Mode-0: In this mode, the serial port works like a shift register and the data
transmission works synchronously with a clock frequency of f_./12. Serial
data is received and transmitted through RXD. 8 bits are transmitted/ received
aty a time. Pin TXD outputs the shift clock pulses of frequency f /12, which

0sC

is connected to the external circuitry for synchronization. The shift frequency
or baud rate is always 1/12 of the OSCillatorrtFe[qﬁJ%%m
SBUF = >

T | EXD 4 Daia transmitied received

Internal cock
generabor |

—>

|
Shift pulses of “fosc/1Y’

Fig 4.25 Data transmission/reception in Mode-0

Mode-1 (standard UART mode) :

In mode-1, the serial port functions as a standard Universal Asynchronous
Receiver Transmitter (UART) mode. 10 bits are transmitted through TXD or
received through RXD. The 10 bits consist of one start bit (which is usually '0"),
8 data bits (LSB is sent

first/received first), and a stop bit (which is usually "1'). Once received, the stop
bit goes into RB8 in the special function register SCON. The baud rate is
variable.

The followina figure shows the way the bits are transmitted/ received.

Reciever samples data at centre of bit time

diestate 1L L L L

11213l 415161 71 g
I T T N A S

f |<7 Data hits 4’|
Start At least one
hit Sin:bit

Stop bit goes to B8
for reception

Fig 4.26 Data transmission format in UART mode

Bit time= 1/f,, 4

In receiving mode, data bits are shifted into the receiver at the programmed
baud rate.
The data word (8-bits) will be loaded to SBUF if the following conditions are true
1. RI'must be zero. (i.e., the previously received byte has been cleared from
SBUF)
2. Mode bit SM2 = 0 or stop bit = 1.

After the data is received and the data byte has been loaded into SBUF, RI
becomes one.
Mode-1 baud rate generation:
Timer-1 is used to generate baud rate for mode-1 serial communication by
using overflow flag of the timer to determine the baud frequency. Timer-1 is
used in timer mode-2 as an auto-reload 8-bit timer. The data rate is generated
by timer-1 using the fol}owing_forfﬁ'ﬂ!?.-i' fosc

baud = 735 12 X[256-(TH1)]

Where,

SMOD is the 7t bit of PCON register

f ..is the crystal oscillator frequency of the microcontroller

It can be noted that f/ (12 X [256- (TH1)]) is the timer overflow frequency in
timer

mode-2, which is the auto-rels&#tBode.
If timer-1 is not runfwamdcges; Wit d oy oo drequency)

Timer-1 can be run using the internal clock, fosc/12 (timer mode) or from any
external source via pin T1 (P3.5) (Counter mode).
Example: If standard baud rate is desired, then 11.0592 MHz crystal could be
selected. 0 B
To qet a standard 9600 ba@@ﬂﬂeﬁ:e%ﬁhii %1 is calculated as follows.
Assuming SMOD to be '0’

11.0592}{1EIE

TH1 = L 110532410 4
256-TH1 = =5 X 15 500

Or,

Or,

TH1=286-3 =253 =FDH
In mode-1, if SM2 is set to 1, no receive interrupt (RI) is generated unless a
valid stop bit is received.

Serial Data Mode-2 - Multiprocessor Mode :

In this mode 11 bits are transmitted through TXD or received through RXD. The
various bits are as follows: a start bit (usually '0’), 8 data bits (LSB first), a
programmable 9 t (TB8 or RB8)bit and a stop bit (usually '1").

While transmitting, the 9 ! data bit (TB8 in SCON) can be assigned the value '0'
or'1. For example, if the information of parity is to be transmitted, the parity bit
(P) in PSW could be moved into TB8. On reception of the data, the 9 1 bit goes
into RB8 in 'SCON', while the stop bit is ignored. The baud rate is programmable
to either 1/32 or 1/64 of the oscillator frequency.

f oo = (2 SMOP /64) f

osc’

Mode-3 - Multi processor mode with variable baud rate :

In this mode 11 bits are transmitted through TXD or received through RXD. The
various bits are: a start bit (usually '0"), 8 data bits (LSB first), a programmable 9
th bit and a stop bit (usually '1").

Mode-3 is same as mode-2, except the fact that the baud rate in mode-3 is
variable (i.e., just as in mode-1).

fhaug= (2 SMOP/32) * (f ./ 12 (256-TH1)) .
This baudrate holds when Timer-1 is programmed in Mode-2.
Operation in Multiprocessor mode:
8051 operates in multiprocessor mode for serial communication Mode-2 and
Mode-3. In multiprocessor mode, a Master processor can communicate with
more than one slave processors. The connection diagram of processors
communicating in Multiprocessor mode is given in fig 4.27.

The Master communicates with one slave at a time. 11 bits are transmitted by
the Master, viz, One start bit (usually '0), 8 data bits (LSB first), TB8 and a stop
bit (usually "1). TB8 is "1' for an address byte and '0' for a data byte.

If the Master wants to communicate with certain slave, it first sends the address
of the slave with TB8=1. This address is received by all the slaves. Slaves initially
have their SM2 bit set to '1". All slaves check this address and the slave who is
being addressed, responds by clearing its SM2 bit to '0' so that the data bytes
can be received.

It should be noted that in Mode 2&3, receive interrupt flag Rl is set if REN=1, RI=0
and the followina condition is true.

1. SM2=1 and RB8=1 and a valid stop bit is received. Or

2. SM2=0 and a valid stop bit is received.

RED TZED ADD1
TZD — BXED
2051 2031
GLAVEL
MASTER D AT
| RED
2051
. SLAVEZ
v
TD AT Dn
RED
2051
SLAVEN

Fig 4.27 8051 in Multiprocessor Communication

After the communication between the Master and a slave has been established,
the data bytes are sent by the Master with TB8=0. Hence other slaves do not
respond /aet interrupted by this data as their SM2 is pulled hiah (1).
Power saving modes of operation :
8051 has two power saving modes. They are -

1. Idle Mode

2. Power Down mode.

The two power saving modes are entered by setting two bits IDL and PD in the
special function reqister (PCON) respectively.

The structure of PCON register is as follows.

PCON: Address 87H

SMOD GF1| gFO| PD|IDL

The schematic diagram for 'Power down' mode and 'ldle' mode is given as
follows:

XTALZ WTALI
. e - lNT ERRUPTS
? *,.;— CLOCK INTERRUPT PORTS
o TIMER PORTS
T J F—= TocPu

oL

Fig 4.28 Schematic diagram for Power Down and Idle mode
implementation

Idle Mode iDL

Idle mode is entered by setting IDL bit to 1 (i.e., =0). The clock signal is gated off
to CPU, but not to the interrupt, timer and serial port functions. The CPU status is
preserved entirely. SP, PC, PSW, Accumulator and other registers maintain their
data during IDLE #&8di2. The port pins hold their logical states they had at the
time Idle was

initiated. ALE and are held at loaic hiah levels.
Ways to exit Idle Mode:
1. Activation of any enabled interrupt will clear PCON.O bit and hence the
Idle Mode is exited. The program goes to the Interrupt Service Routine (ISR
. After RETI is executed at the end of the ISR, the next instruction will start
from the
one following the instruction that enabled Idle Mode.
2. A hardware reset exits the idle mode. The CPU starts from the instruction
followina the instruction that invoked the 'ldle' mode.

Power Down Mode:

The Power down Mode is entered by setting the PD bit to 1. The internal clock to
the entire microcontroller is stopped (frozen). However, the program is not dead.
The Power down Mode is exited (PCON.1 is cleared to 0) by Hardware Reset only
The CPU starts from the next instruction where the Power down Mode was
invoked. Port values are not changed/ overwritten in power down mode. V can
be reduced to as low as 2V in PowerDown mode. However, V has to be restored

gbg?rm&}ﬁaﬁgefore PowerDown mode is exited.

8051 has about 111 instructions. These can be grouped into the following
cateqories

1. Arithmetic Instructions

2. Logical Instructions

3. Data Transfer instructions

4. Boolean Variable Instructions

5. Program Branching Instructions

The following nomenclatures for register, data, address and variables are used
while write instructions.
A: Accumulator

B: "B" register C: Carry bit
Rn: Register RO - R7 of the currently selected register bank

Direct: 8-bit internal direct address for data. The data could be in lower 128bytes
of RAM (00 - 7FH) or it could be in the special function register (80 - FFH).

@Ri: 8-bit external or internal RAM address available in register RO or R1. This is
used for indirect addressing mode.

#data8: Inmediate 8-bit data available in the instruction. #data16: Immediate
16-bit data available in the instruction.

Addr11: 11-bit destination address for short absolute jump. Used by instructions
AJMP & ACALL. Jump range is 2 kbyte (one page).

Addr16: 16-bit destination address for long call or long jump.

Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all
conditional jumps.

bit: Directly addressed bit in internal RAM or SFR

Arithmetic Instructions
Mnemonics Description Bytes Instruction
— Cvcles
ADD A, Rn L2 A+Rn 1 1
ADD A, direct A £+ (direct) 2 1
ADD A, @Ri A <A+ @RI 1 1
ADD A, #data A A + data 2 1
ADDC A, Rn £ A+Rn+C 1 1
ADDC A, direct A &+ (direct) + C 2 1
ADDC A, @Ri AcA+@Ri+C 1 1
ADDC A, #data A A+data+C 2 1
DA A Decimal adjust 1 1
ace—mulator
DIV AB DiHe AbyB A
quoticat 1 4
B__remainder
DEC A A A-1 1 1
DEC Rn Rn Rn -1 1 1
DEC direct (direct) (direct) - 1 2 1

DEC @Ri @Ri <—@Ri -1 1 1
INC A A<+1 1 1
INC Rn Rn<=n + 1 1 1
INC direct (directs=irect) + 1 2 1
INC @Ri @Ri =—@Ri +1 1 1
INC DPTR DPTR<OPTR +1 1 2
MUL AB Multiply A by B
A<—ow byte (A*B) B 1 4
i * B)
SUBB A, Rn A=A-Rn-C 1 1
SUBB A, direct A< - (direct) -C 2 1
SUBB A, @Ri A—A-@Ri-C 1 1
SUBB A, #data A<~ -data-C 2 1
Logical
Instructiongnemonics Description Bytes| Instruction
Cycles
ANL A, Rn A<\ AND Rn 1 1
ANL A, direct A< AND (direct) 2 1
ANL A, @Ri A< AND @Ri 1 1
ANL A, #data A <= AND data 2 1
ANL direct, A (directi-Slirect) AND A 2 1
ANL direct, (direct) «<— (direct) AND| 3 2
#data data
CLRA A<—)0H 1 1
CPLA AcA 1 1
ORLA, Rn A<—A ORRn 1 1
ORL A, direct A<\ OR (direct) 1 1
ORL A, @Ri A<\ OR @Ri 2 1
ORL A, #data A <= OR data 1 1
ORL direct, A (direct-lirect) OR A 2 1
ORL direct, (directs=irect) ORdata | 3 2
#data
RLA Rotate accumulator left | 1 1
RLC A Rotate accumulator 1 1
left through carry
RR A Rotate accumulator right 1
RRC A Rotate accumulator 1
right through
carry
SWAP A Swa=nibbles within 1 1
- Acumulator
XRL A, Rn A__AEXORRn 1 1
XRL A, direct A A EXOR (direct) 1 1
XRLA, @Ri A A EXOR @Ri 2 1
XRL A, #data A A EXORdata 1 1

XRL direct, A (direct) &=ect) EXOR A 2

—_—

XRL direct, (direct) «<— (direct) EXOR| 3 2
#data data

Data Transfer

Instructiofghemonics Description Bytes| Instruction

Cycles
MOV A, Rn A<2n 1 1
MOV A, direct A <direct) 2 1
MOV A, @Ri A<DRi 1 1
MOV A, #data A <=ata 2 1
MOV Rn, A Rn=— 1 1
MOV Rn, Rn<direct) 2 2
direct
MOV Rn, Rn<=ata 2 1
#data
MOV direct, A (directt—= 2 1
MOV direct, (directi=n 2 2
Rn
MOV directT, (direct1) «=direct2) 3 2
direct2
MOV direct, (direcs@Ri 2 2
@Ri
MOV direct, (direct}<-ata 3 2
#data
MOV @Ri, A @Ri <A 1 1
MOV @R, @Ri <direct) 2 2
direct
MOV @R, @Ri <lata 2 1
#data
MOV DPTR, DPTR «=atal16 3 2
#data16
MOVC A, A <Zode byte pointed by A+ | 1 2
@A+DPTR DPTR
MOVC A, A <=ode byte pointed by A+ PC| 1 2
@A+PC
MOVC A, A <Zode byte pointed by Ri 8-bit 1 2
@Ri address)
MOVX A, A <=xternal data pointed by | 1 2
@DPTR DPTR
MOVX @Ri, A| @Ri <A (External data - 8bit | 1 2
address)

MOVX @DPTR «—A(External data - 1 2
@DPTR, A 16bit_address)
PUSH direct (SP) «—direct) 2 2

POP direct (direct+5P) 2 2
XCH Rn Exchange A with Rn 1 1
XCH direct Exchange A with direct byte 2 1
XCH @Ri Exchange A with indirect RAM | 1 1
XCHD A, @Ri |Exchange least significant 1 1
nibble of A with that of
Boolean Variable indirect RAM
Instructiong§nemonics Description Bytes| Instruction
Cycles
CLRC C-bit < 1 1
CLR bit bit—= 2 1
SETC C— 1 1
SET bit bit— 2 1
CPLC Ce«— Ci 1 1
CPL bit bit «— bit 2 1
ANL C, /bit C «=. it 2 1
ANL C, bit C «Z. bit 2 1
ORL C, /bit C<=+ bi 2 1
ORL C, bit C <=+ bit 2 1
MOV C, bit Csit 2 1
MOV bit, C bit—= 2 2
Program Branching
Instructiongynemonics Description Bytes Instruction
Cycles
ACALL addr11 PC + =—SP) ; addr 11—=C 2 2
AJMP addr11 Addr11 —PC 2 2
CJNE A, direct, Compare with A, jump (PC + 3 2
rel rel) if not equal
CJNE A, #data, Compare with A, jump (PC + 3 2
rel rel) if not equal
CJNE Rn, #data, Compare with Rn,jump (PC | 3 2
rel + rel) if not equal
CJNE @R, Compare with @Ri A, jump (PC| 3 2
#data, rel + rel) if not equal
DJNZ Rn, rel Decrement Rn, jump if not zero| 2 2
DJNZ direct, rel | Decrement (direct), jump if 3 2
not zero
JC rel Jump (PC + rel) if C bit = 1 2 2
JNC rel Jump (PC +rel) if C bit=0 2 2
JB bit, rel Jump (PC + rel) if bit = 1 3 2
JNB bit, rel Jump (PC + rel) if bit=0 3 2
JBC bit, rel Jump (PC + rel) if bit = 1 3 2
JMP @A+DPTR A+DPTR —C 1 2

JZ rel

JNZ rel
LCALL addr16
LUJMP addr 16
NOP

RET

RETI

SJMP rel
JMP @A+DPTR
JZ rel

JNZ rel

NOP

If A=0, jump to PC + rel
If A#0,jump to PC + rel
PC + =—35P),addr16 —C

Addr16 —PC
No operation
(SP) —PC
(SP) —C, Enable Interrupt
PC+ 2 +rel —=PC
A+DPTR —2C
If A=0.jump PC+ rel
If A#0,jump PC + rel
No operation

= ININ=2INR =R, WwWWNN
= ININININININIR,RININININ

Example programs
Character transmission using a time delay

A program shown below takes the character in ‘A register, transmits it, delays for
transmission time, and returns to the calling program. Timer-1 is used to set the

baud rate, which is 1200 baud in this program

The delay for one character transmission (in Mode 1 i.e.10 bits) is 10/2400 =

0.00833 seconds
Or, 8.33 milliseconds
Hence software delay of 10ms is used.

Timer-1 generates a baud rate close to 1200. Using a 12MHz crystal, the reload

vadge is 170108

— - =729.958
22X12X2400

Or,230i.e. E6H

This gives rise to an actual baud rate of 1202. SMOD is programmed to be 0.

Assembly language Program is as follows

for relocad value for baudrate
for 1 millisecond
for 10 millisecond

EQU OE6&H ; defining constant
DELAY EQU 0OAG6H ; defining constant
DLYLSB EQU OAH ; defining constant
DLYMSE EQU 00H ; defining constant
ORG 0000H ; Org directive
ANL PCON, #7FH ; BMOD = 0O
ANL TMOD, #O0FH ; Alter only Timer-1
ORL THMOD, #20H ; program Timer-1 in mode-2
MOYV THL, #RELOAD ; program reload wvalue to TH1
SETE TR1 ; enable Timer-1 run bit (start timer)
MOV SCON, #40H ; Berial port in mode-1

TEMIT: MOV SBUF,

L -

; send the ASCII wvalue of ‘A’

(receive not enabled)

ACALIL. TEMITTIME
SJHMP TRMIT

; wait for DELAY
; again transmit

; Code to wait for the transmission to complete
The subroutine TRMITTIME generates a delay of about 10ms. With a clock of

12MHz, one instruction cycle time is
1 x12 =1 x 10°°

12 = 10E

The loop "MILSEC" generates a delay of about 1 x 10-3 sec. This gets executed 10
times

for a total delay of 10 x 10-3 sec or 10ms
TRITTIME: MOV A, WDLYLSE
MOV B, WDLYMSE
ACALT, SOFTIME
RET
SOFTIME: PUSH O7H
FUSH A
ORL A, B
CINE 2, #00H, OK
POF A
5JMEF DONE

OR: POP A

TIMER.: MOV R7, WDELAY ; Generate delay for 1 millisecond
MILEEC: ROP

CJNE &, #0FFH, WO ROLL

RO ROLL: CJHWE &, #00H, TIMER
DOME : POF O7H

RET
EHD

Interrupt driven character transmission

In 8051, when a character is transmitted, SBUF register becomes empty and this
generates a serial port interrupt (TI). Tl and Rl both point to the vector location
0023H in the program memory. An interrupt service routine can be written at
0023H to send the next character.

A program is written here to transmit a character say ‘A’ continuously based on
interrupt. The microcontroller uses a clock of 12MHz with a baud rate of 1202. The
program is executed following a hardware reset.

Assemb|y g%g%g&lm%anf idefgrfrlipyed oad constant for baudrate generation

org directive
S5JH4F START ; Jump to main program

SENDCH: ORG 0023H ISR for RI/TI interrupt

CLR TI ; clear transmit flag
MOV SBUF, H'a7 ; send the ASCII walue of ‘Af
REETI ; return back to main program

Set SMOD=0

Alter only the setting of Timer-1
Timer-1l in mode-2

Move the reload wvalue to TH1

start Timer-1 for baud rate generation
set serial port in mode-1

Enable serial port interrupt

START: ANL PCOM, #7FH
ANL TMOD, WOFH
ORL TMCOD, #20H
MOV TH1, WRELOAD
SETE TR1
MOV SCCM, #40H
ORL IE, #90H

MOV SBUF, HAa’ ; Transmit a character
WAIT: SJHMP WAILT ; wait till interrupt occcurs
EMWD

Interrupt driven data reception

When a character is received, if receive mode is enabled, Rl flag is set. This leads to
the interruption of the main program and the processor goes to the interrupt vector
location, i.e.

0023H for serial port. The interrupt service routine at 0023H gets executed to

read the

character so that the next character can be received. The following program
receives a character on interrupt basis and outputs the character to port-1,
possibly for a display. The crystal frequency is12MHz and baud rate is set at

1202 baggLoan EQU 0EEH

5

defining relecad constant for bandrate generation

Assemblylangyage progra m&%@i@ﬂ%@

EJMP START

RCVCH: ORG 0023H
CLE RI
MOV Pl, SBUF
RETI

START: ANL PCON, #07FH
ANL TMoD, #0FH
ORL TMoD, #20H
MOV TH1, #RELOAD
SETE TEL
MOV SCOM, #40H
SETE REN
ORL IE, #90H

WAIT: S5JMP WAIT

END

Jump to main program

ISR for RI/TI interrupt

clear RI flag

write received character to port-1
return back to main program

SMOD=0

Alter only the setting of Timer-1
Program Timer-1 in mode-2

Move the reload walue to TH1

Runs the timer for baud rate generation
programs serial port in mode-1

Receive is enabled

Serial interrupt is enabled

walt until receiwve interrupt occurs

QUESTIONS:

abkown =

0 0N

10.
11.

12.

13.
14.

15.

Differentiate between microprocessors and microcontrollers.
What is a special function register?

Which port of 8051 is used as address/data bus?

What is function of RS1 and RSO bits in the PSW of the 8051?

What is the address range of the bit-addressable memory of the
80517

Write note on memory organization in the 8051.
Explain the stack operation in the 8051.
Where are the registers RO — R7 located in the 8051?

Give one example each for one-byte, two-byte and three-byte

instructions of the 8051.
When the instruction DJNZ useful?

Write a program to multiply two 8-bit numbers in the internal RAM
and store theresult in the external RAM.

Write a program to shift a 4-digit BCD number left by one digit.
Assume that the data is stored in 30H and 31H.

Write a program to reverse the bits in a byte.

Write a program to find the biggest number in a block of data stored

in the memory locations 70H - 7FH.
Write a program to generate a square wave of 10 KHz on the LSB of
port 1

i.e. P1.0,using a timer.

REFERENCES:

1.

2.

0000 to 8085 Introduction to microprocessor for scientist & engineers by
Ghosh & Sridhar, PHI.

Fundamentals of microprocessor and microcontroller by B. RAM, Dhanpat
Rai Publications.

Advanced microprocessor and peripherals (architecture,
programming and interfacing) by A.K.Roy & K.M.Bhurchandi, TMH
Publication.

Microprocessor, theory and applications by A.V.Deshmukh, TMH Publication.

