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[R15A0415) DIGITAL SIGNAL PROCESSING

OBIECTIVES:
# To understand the basic concepts and techniques for processing signals and  digital signal
processing fundamentals.

« To Understand the processes of analog-to-digital and digital-to-analog conversion and relation
betwenn continuaus-time and discrete time signals and systems,
« To Master the representation of discrete-time signals in the frequency domain, using -
transform, discrete Fourier transforms [DFT).
« To Understand the implermentation of the DFT in terms of the FFT, as well as some of its
applications [computation of convalution sums, spectral analysis),
# To learn the basic design and strecture of FIR and IR filters with desired frequency responses
and design digital filters.
= The impetus is to introduce a few real-world signal processing applications.
To acquaint in FFT algorithms, Multi-rate signal processing technigues and finite word length
effects.
LINIT B
Imtroduction to Digital Signal Processing: introduction to Digital Signal Frocessing: Disorete Time Signals
& Sequences, Linear Shift Invariant Systems, Stability, and Causality, Linear Constant Coefficient
Difference Equations, Frequency Domain Representation of Discrete Time Signals and systems.
Realization of Digital Filters: Applications of £ - Transforms, Solution of Difference Equations of Digital
Filters, System Function, Stability Criterion, Frequency Response of Stable Systems, Realization of Digital
Filters - Direct, Canonic, Cascade and Parallel forms,
LINTT 10
Diserete Fourier Series: DFS Representation of Perlodic Sequences. Properties of Discrete Fourier
Series., Discrete Fourier Transforms: Properties of DFT. Linear Coreolution of Sequences using DFT.
Computation of DFT: Over-lap Add Method, Over-lap Save Method, Relation between DTFT, DFS, OFT
and Z-Transform,
Fast Fourier Transforms: Fast Fourier Transforms |FFT) - Radiz-2 Decimation-in-Time and Decimation-in-
Frequency FFT Algorithms, Inverse FFT and FFT with General Radiz-N.
LINIT s
IR Digital Filters: Analog Filber Approximations - Butterwarth and Chebyshew, Design of IR Digital filvers
from Analog Filters, Step and Impulse Invariant Technigues, Bilinear Transformation Method,
LINIT I
FIR Digital Filters: Characteristics of FIR Digital Filters, Frequency Response. Design of FIR Filters: Fourier
Method, Digital Filters wsing Window Techniques, Frequency Sampling Techpique, Comparisen of IR &
FIR filters,
LINIT -
Multirate Digital S%ignal Processing: Introduction, Down sampling, Decimation, Upsampling,
Interpolation, Sampling Rate Conversion, Applications of Multi Rate Signal Processing,
Finite Word Length Effects: Limit cycles, Overflow oscillations, Round-off Moise in IR Digital Filters,
Computational Output Round Off M oise, Methods to prevent Overflow, Dead band effects.
TEXT BOOKS:
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1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Froakis, Dimitris G.
Manolakis, Pearson Education / PHI, 2007,
2. Discrete Time Signal Processing — A. V. Oppenheim and R.WY. Schaffer, PHI, 2009.
3. Fundamentals of Digital Signal Processing - Loney Ludeman, lohn Wiley, 2009
REFEREMCE BOOKS:
1. Digital Signal Processing — Fundamentals and Applications — Li Tan, Elsevier, 2008,
2. Fundamentals of Digital Signal Processing using MATLAB - Robert J. Schilling, Sandra L. Harris, b
Thomsan, 2007.
3. Digital Signal Processing = 5.%alivahanan, AMallavaraj and C.Gnanapriva, TMH, 2009,
4. Discrete Systems and Digital Signal Processing with MATLAB - Taan 5. EIAli, CRC press, 2009,
5. Digital Signal Processing - A Practical approach, Emmanuel €. Ifeachor and Barrie W, Jlervis, Znd
Edition, Pearson Education, 2009,
E. Digital Signal Processing - Nagoor Khani, TMG, 2012,
OUTCOMES

On completion of the subject the student must be able to:

- ® ® ® @

Perform time, frequency and z-transform analysis on signals and systems

Understand the inter relationship between DFT and various transforms

Understand the significance of various filter structures and effects of rounding erors

Design a digital filter for a given specification

Understand the fast computation of DFT and Appreciate the FFT processing

Understand the trade-off between normal and multi rate DSP techniques and finite length word
effects
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DIGITAL SIGHNAL PROCESSING UMITL

i.i Hasic Concepis of Siepnnl Processing

Figurg 11,1 desenibes the concept of analog signal processing. An analog signal {ransducer signal phus
poise) produced by o iransducer (sensor) i caplured For the real-world application. For example, a
temperature sonsor produces 3 small solinge (10mY por 07 ) based on the 1emperawne of cnvironment: a
microphone pencrales o voliage range from approamately S0 mY o 100 mV according 1o loudness of
vioace., To b able 1o use the acquired analoy signal, tao steps wswalls are imvolved  First, the small seale
analog sipaal will be signal cosdationed or amplilied, we reler this as the ume domam processing aller
which the amplhificd signal range fits for applications, for example, the amplificd 1emperature signal iz
feasabibe 1o drive the analog device or com be used lor the analoeg to dbgeta covnverse (ATR ) channel for
Turther processing applicanon. Saimalarly, the pmphificd microphone signal could dise ihe budspeaker, or
pass io the ADC channel for dignal recordimg Floweser. duning the noisy sensor environment and
amplifving process, signal moise is also added 10 the desired signal such as signal Nuctuation in the
temperature signal, or hissing sound in the recorded voice, The noise could be fully or partially remoned
by wsing an amalog filier as shown i Figure 111 We refer this process as the frequency: domain
processing

Temperatre sEnLo

Teansducer signal A
R‘ e, mpied and enhanced ugnal

Misropieme —_— H“tﬁ“ﬂ:&?““ Anglogtier |——

W Ampited sgnal plus name

Figure 1.1.1 Analog signal proccssing scheme,

A major objective of analoy signal processimg is o design a suitable analog Glier, which could be
construcicd using the clectrons: devioes based on the characteristics of the desired signal and noise. Via
analog signal processing, the enbanged signal 15 produced

The concepl of dgeer! segmerd proscesermg (18T is better illastralsd br a pepical smmplified block
diagram in Figure 1.1.2, whech consists of scveral blocks such as the analog filier, ADC, dhpvral signal
prevcessanr, dhgeal b gererleg comveeter (TACE, and recorsirpcio filfer fandi-tmage filter),

Anag Bl ke Eegts Precensd Chput Analog

Fipud g sigral degrlal el wgnal outpit
#nalog = [

— » ADGC » D5P DAC  fpe ""ﬁ“"““—h

Figure 1.1.2 Dhgital signal processing scheme.

As shown m the block diagram, the analog signal. which 15 comtinuous bath in time and
amplilude, 15 generally encountered in our real life. Examples of such anabog signals inclade current,
soliage, lemperptune, pressure. and light imensies. Uswally 3 transdicer (sensor) with an amplilicr 15 used
1o comvert a non-clecircal signal o an analog electrical signal (voltage). This analog signal i then fed 1o
an analog filier. where the analog filier perfoms filicring 10 limin the frequency range of the analog signal
peior o the sampling process. The purpose of filiering 15 10 ugmficanly stcnusie the ahasing distortson,
which will be cxplainad in Chapter 7. The band-limuted signal at the outpat of the analog filier is then
samplad and comertad via an ADC into the shwered saprand, which is disercte bath i ime and amplitudg,
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DIGITAL SIGNAL PROCESSING UNIT1

The digital signal processor then accepts the digital signal and processes the digital data according to the
digital signal processing rubes such as fowpwass, fughpess, bancpasy dignal Giliers, or other algonthms for
dhfferent applications. Notice that the digital signal processor is a special tvpe of digital computer, which
could be a gencral-purpose digiial compuler, a microprocessor, or an advanced micro-controller;
furthermore, digital signal processing rules could be implemented using soflware i gencral With the
digital signal processor and corrcsponding software, a processed digital output signal is gencrated. This
signal behaves in a manncr according to the specific algonthm used. The next block in Figure 1.1.2 is the
DAC. which comverts the processed digital signal 1o an output signal. As shown in Figure 1.1 2. the signal
15 continuous in time but discrete m amphiude (usvally sample and hold signal). The final block is
designated as a function 10 smooth the obtained output signal back 1o the analog signal via a
reconstruction {anti-image) liler for real-world apphications
As we can see, the analog signal processing docs not require software, algonithms, ADC, and
DAC. The processing fulby relies on the elecineal and clectrome devices such as resistors, capacitors,
transistors, operational amphificrs. and imtcerated crcuits (10). Digital signal processing requires analog
signal processing before the ADC and afier the ADC, Since the digital signal processor uscs soflware,
digital processing, and algorithms, it has a great deal of Mexibility, less noise interference, and no signal
distortion in various applications. As shown in Figure 1.1.2, the analog signal processing cannol be
avoided and 15 2 must for comerting real-woeld information 1o a digital form and the digital form back 1o
real world. In newt section. we will focus on reviewing some typical applications of digital signal
processing.
L2 List of Signal Processing Application Examples

Applications of DSP arc increasing in many arcas where analog electronics arc replaced by the digital
signal processors while new applicanons are depending on the digital signal processors. With the
decreasing cost of the digial signal processoes and the increase in its performance, DSP is likely continue
to impact engincering design in our modern dasly ife. Typical examples using the DSP are listed below:

Digital audio and speech:
Dhgital audio coding such as CI players and MP3 plavers
Digital crossoners and digital audio cqualizers
Digital stereo and surround sound
Nose reduction sysiem
Specch coding
Data compression and encryplion

Digital telephone:

Specch recognition
High-speed modems



DIGITAL SIGNAL PROCESSING UNIT1

Echo cancellation

Specch ssnthesivcers

TDOMF gencration and delection
Answering machines

Automaobile industry:
Active noise control syvstem
Active suspension sysiem
Digital audio and radio
Digital control

Electronic communications:
Cellular phones
igital elccommunications
Wireless LAN
Satellite communications

Medical image equipment:
ECG analvecrs
Cardiac monitoring
Medical image and image recognition
gital X-rovs and image processing

Muolvimedin:
Internct phones, audio, and video
Hard disk drive clecironics
Dhigital paciuncs
Digital camcras
Text-to-voice and voice-1o-text lechnologics

However, the hist of applications above is not meant 1o cover all signal processing applications. DSP arcas
are increasing and being cxplored by engincers and scientists. More and more DSP' techniques are
impacting and will continue 1o improve our hife.
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DIGITAL 5IGMAL PROCESSING UNIT 1

Classification of discrete-time signals (Along lines similar to contimnous-time signals)
Diserete-time Energy and Power signals The enevgy E of a discrete-trme signal xfn) is
given by :
E=lm ¥ x{n)x'(n)
k =N

where x*u'ﬂntm:plt: conjugate of x. I x{n) is a real sequence thea x(n) x i) "I‘.fﬂ}. The
above defimticn can also be wnitten as

E= lim z]:{n;q (there are 2N+ terms here)
'Ib:mwngepww]’nflh:ngnﬂu

P LT I-‘IH IH‘P[":'

If E 15 finite but non zero (1.e., 0 < E < o) the signal is an emergy signal. It 15 a power
signal if E is infinite but P 15 fimte and nonzero (ie., 0 < P < =). Clearly, when E is finite, P=0.
If E 15 infinste P may or may not be finite.

If pesther E nor P is finste, then the signal is neither an energy nor a power signal
FROBLEM:  Forthe sigml:(nj- 1 for all n,

E=lm Ti‘r{nH lel;:whmhum.ﬁmlemt}

ﬁ-‘.l l-i--i
L - I “ - I.._I
P E?N- E}r[ni lim *H+1.E,,1 lim el 1 which is finite
Thus xfm) 5 & power signal |

Periodic signal The discrete-time signal xyin) i3 peniodic if, for some integer N> 0
xim=N)=xin) for all n

The smallest value of N that satisfies this relation is the (fundamental) period of the signal. If
there is no such integer N, then x/n) is an apenodic signal

Given that the contimnous-time signal x4t is periodic, that is, x4 = x4t=Tg) for all 1,
and that xyn) is obtained by sampling x.(t) at T second imtervals, xfin) will be periodic if Tp'Tis a
rational oumber but not otherwise, If To/T=N/L for integers N2 1 and L 2 1 then xfn) has
exactly N samples in I peniods of xzft) and xfn) is periodic with period N.

Periodicity of sinuseidal sequences The simsoudal sequence s (2afn) has several major
differences from the comtinuous.time sinusoid as follows:

a) The simosoad xin) = san (2afpn) or s (egn) 15 penodic of fp. that 15, ey, 15 ratienal. If fp as
not rational the sequence is not periodic. Replacing n with (n—N) we get

xin=N) = sin (2xfo (n+NJ) = sin 2xfon. cos 2yfaN + cos 2afn. sin 2oV
1
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DIGITAL SIGNAL PROCESSING UNIT 1

Clearly xfn=N) will be equal to xjn) if &N'=m, an integer or fj = mN. The fundamental period is
obtamed by choosing m as the smallest integer that yields an inteper value for N. For example, of
Jo= 15725, which in reduced fraction form is 3/3, then we can choose m =3 and get N'=5 as the
period. If fj is rational then f = p'g where p and g are integers. If pig is in reduced fraction form
then g is the peniod as in the above example.
On the other hand if fyis imaticnal, say fy=+/2 , then N will ot be an integer, and thns

x(in) is apenodic.

The sum of rwo discrete-rime periodic sequences 15 also periodic. Let xfin) be the sum of two

peniodic sequences, x)in) and x3(n), with periods N1 and N> respectively. Let p and g be two

integers such that

pNy=ghN>=N (p and g can always be found)
Then xfn) is peniodic with period N since, for all n,

xfn=N}=xifn+N} + x2in+N)
= xJ{n=pN1) + x3in+-gN1)
=X} +xxn)
= xfn) for all

Odd and even sequences The signal x(n) is an even sequence if xin) = xf—n) for all n, and 15 an
odd sequence if xfn) = —=xj~n) for all n.

(Lrw (Even) 4 xfin) (Odd)
>
T mete () 0
-2 2 p 2
T * 1 x: .,ﬁ': - Jj .1
) ————— 0
0

The even part of x{n) is determined as x,fin) = wuﬂ the odd part of xfn) is given by

Xefn) = M The signal x/n) then is piven by xfn) = xefn)=x2/n).
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DIGITAL SIGNAL PROCESSING UNIT 1

ELEMENTARY DISCRETE TIME SIGMALS:
1) The unit sample sequence (discrete-time impulse, aka Kronecker delta)
)= { , n=0
0. n=0
Wheteas :Tfn!i:._mﬁ:ewha'rﬁmﬂarm the continwons-time mepulie function off) — the
Darac delia — we note that the magmnide of the discrete mpulse 15 fnste. Thus thers are no
amalytical difficulties in defining ayn). It 1s convenient to inferpret the delta fimction as follows:

S arpument) = {] when srgument = 0
0 when argament = 0

&fn) din-kj
1 1 T
L i - 0
=] 1] 1 =] 1] 1 — &k
2) The unit step sequence
um-{l, nz0
0, n<0
u{argument) = | 1, if argument = 0
0, if argument < 0
ufn) tfn=k)
| T T T |
Q n L]
-1 o 1 =1 0 e k

a) The discrete delta function can be expressed as the first difference of the unit step fiznction:

Sfn) = ufn) — ufn-1)
b) The sum from —= to n of the & function gives the unit-step:

3
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DIGITAL SIGNAL PROCESSING UNIT1

L

iﬁm* .[“ if

1
= it azof =

Sum up 1o here 15 20

Sum up to here ds 1
Fesults (2) and (b) are like the continuous-time demvative and intepral respectively.
c) By inspection of the grapl of win), shown below, we can write:
i) = S{n) + G(n—1) + Sn-2) +... = é.s:u- )

wifin)
sim) Sin=l)  Sn=2)  dfn-3)

[—.

0 1 2 3
d) For any arbitrary sequence xfn), we have

x(n) ain=k) = xik} sfn=k)

that i3, the multiplication will pick out just the one vahee x/k).
If we find the infinite sum of the above we get the sifting property:
ix{n} il — kY= xikl

="}

Xl
=ik
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DIGITAL SIGNAL PROCESSING UNIT 1

L]

&) We can write xih) as follows:

xfn)= ...+ x{—l1) dfn=1)+ x(0) &(n) + x(1)} afn-1) +x(2) afm=2) + ...
This can be verified 15 be true for all n by setting in tum

ceafi=m=2 gl n=0n=] n=2 etc .

The above can be written compactly as
xfm}= 3 x(k)d{n-k)

This 15 a weighted-sum of delaved vt sample fimctions.
1) The real exponential sequence Consider the familiar continuons time signal

it =g =™, 120
The sampled version is piven by setting r=nT
xl)= ¢ = ([, nT20
Dropping the T from xjnT) and setting ¢~ = a we can write
xmj=a", nz0

The sequence can also be defined for both positive and negative n, by simply wniting xfn) = a"
foralln.
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DIGITAL SIGNAL PROCESSING UNIT 1

X =™, 1t 20

# xfm)=a" ufn)
1

() . am g

a

a’
[§¢
? n

0 1 2 3 4 5 &6

4) The sinusoidal sequence Consider the contimions-time smusoid xit)
x(t)=d sin 2aFot= A sin Qg

Fpand Qpare the analog frequency in Hertz (or cycles per second) and radians per second,
respectively. The sampled version is given by

x(nT) = A sin 2aFgnT = A sin @nT
We may drop the I from x(n]) and write
xin) = 4 sin 2xFenT = 4 sin @nT, forall n
We may write QoI = &g whach 15 the digital frequency in radians (per sample), so that
xin) = sin cagn = A sin 2xfpn, forall n
Setting ey = 2afy gives fp = ep2x which is the digtal frequency in cycles per sample. In the
analog domain the horizontal axis 15 calibrated in seconds: “second” 15 one unit of the
independent variable, so Gy and Fj are in “per second”. In the digital domain the horzontal axis

15 calibrated in samyples; “sample” i5 one unit of the independent vanable, so wy and fy are 1n “per
sample”.
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DIGITAL SIGNAL PROCESSING UNIT 1

Discrete-time systems

Definition A discrete-time systen is a mapping from the set of acceptabile discrete-time signals,
called the input set, 1o a set of discrete-time signals called the cwtpust set

Definition A discrete-time system is defermfinanc if its output (o a given ingot does not depend
upen some random phenomencn. I 0t does, the system 15 called a randown fstochastic) srstem.

Definition A digital sysfenr 15 8 mapping which assigns a digital output sagnal to every
acceptable digital impuat signal,

A diserete-time system can be thought of as a transformation or operater, T, that maps an
input sequence xin) to an cufput sequence yn) shown thos:

xfn) yim) = Ixin}]
= 1 M T "

In what folloors we focus on the presence or absence of the following properties in
discrete-time systems: Losarity, slift imvanance, cansality and stabiliry.

Filter Some refer to a linear time-invanant (LTT) system simply as a filter, that i, a filter is a
system T with a single input and a single cutput signal that is both linear and tme-invanaot,

Linearity

Definition A discrete-time system J].] i5 lnear if the response to a weighted sizm of inputs xpin)
and xyn) 15 a weighted sum (wath the same weights) of the responses of the moputs separately for
all weights and all acceptable inpasts. Thos the system yia) = T]xm)] is Loear if for all ap, a;,
xpfn) and xxn) we have

Tapimi—az:mi] = ayIlrimi] + axTxaim))

Another way of saying this is that if the mputs x)fn) and x2n) produce the cutputs y14in)
and yyn), respectively, then the mput apxyin) = axyn) produces the cutput o yifn) = azvan).
This 15 called the superposition principle. The ay, a3, xjfn) and x3(n) may be complex-valued.
The above defipition combdnes roo properties, Viz.,

L. Additivity, that is, Thxym)+xa00] = Tixyin] + Theyn)]. and
2. Scaling (or homogeneity), that i, TTe xfJ] = ¢ Txfn)]

The procedure of checking for lmeanity is:
1. Find outputs y;(n) and y3(n) comesponding to inputs xj(n) and x;fn)

2. Form the sum ayy;in) = a;y:fn)

3. Find output y3in) corresponding to input ayx;fn) + axfn)
4. Compare the results of steps 2 and 3

7
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DIGITAL SIGNAL PROCESSING UMIT 1

Examples of Linear systems:
1. win) = xfm} = xfn=1} = xfn=2)
1. yin) = yfn=l) = x(n)
3.y =0
4wl =il (Buf time-varying)
Examples of nonlinear systems:
L yin)=xfn)

2. yim) = Mxfnd—3. This is a Nirear eguation though! This system is made vp of a
linear part, 2 xyn), and a zero-impuot response, 3. This is called an fnerenieritally
Enear system, for it responds linearly to changes in the input.

Example Determine if the syitem vn} = J[xfml] = xf—n) 15 bnear or ponbinear,

xim) 1 ¥in)= Txfi] = xf—n}

Answer Determune the outputs )/, ) and yif, ) correspending to the two st sequences xyfn) and
x2im) and form the weighted sum of outputs:

¥pinp = Tlxpnj] = xpi~n}
¥ainp= Txsnj] = xx—n)

The weighted sum of outputs = a xf—) + a3 x3f-n) — (A).
Next determine the cutput vy due to o weighted sum of inputs:

Fun)= Tlayxpind + azxpind] = ap xgf=n) + a3 x3f=n) = (B)

Checl: if (A} and (B) are equal In this case [A) and (B) are equal; bence the system i
Lmear,

Example Examine yn) = fxm)] = xfn) = n xfn=+1} for kocarity.

xfn) i) = TTxfal] = xfml = & xfe-I)
0]

Antwer The outputs due 1o xfn) and x2(n) are:

yofmp = Ixpiml] = xpfm} =+ mxpim=1)
yofmp= TMxanf] = xxfn) + n xn=1)

The weighted sum of owtputs =gy xpfnp —aymxym—1) — az xxn) + axnxym—1) — (A)
The cutpat dase 1o 8 weighted snm of inputs is

yafn) = Tayxyim) + azx:in)]
= qyxpi) —azxaal + o fapapn—1) = a:xxn=11
=gxrm) +=azxxn) = narxm=I)+=nazzn=1)— (B)

Since (A) and (B} are equal the system is linear,
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DIGITAL SIGNAL PROCESSING UNIT 1

Example  Check the system yiin) = T[xfn)] = ne"“! for linearity.

L ] vl = ;].rﬁ-'u] =p
Answer The outputs due x;fn) and xxh) are;
yafn)= Txsfn)]=n gl e
yafm)= Txanj] =n dut
The weighted sum of the outputs = agn ™ +a;nelst1 — (4)
The output doe to a weighted sum of inputs 15
yifm} "T[ﬂ'f xpfm) = a;-:r;-fn,l] - "BI" afmy e agfa] ®)

We can specify a;. a3, x)n), x3in) such that (A) and (B) are not equal Hence nonlinear.

Exzample Check the system yfin) = I[xfnj] = a" cos{2an/N) for linearity.

xfn} yin)=a" cos (2anN)
— 1] —

Answer Note that the input is xjn). Clearly yyn) is mdependent of xjn). The outputs due to x;fin)
and xsfmn) are:

wyfin) = Txfni] = a” cos (2mN)
yam) = Txzn)] = a" cos (2mN}

The weighted sum of the outputs = bya” coz (2oN) + boa” cos (2mN) — (A)
The output due to a weighted sum of mputs is
yifmp=T[byxpfn) = brxxnj] =a" cos 2mN) — (B)
(A) and (B) are not equal, so the system is not linear. (But (A) = (by=b) a" cos (2an/N) and this is
equal to (B) within a constant scaling factor.)

Example Check the system yvin) = I[xinJ] = n xfn) for Linearity.
xfn)

2 m

¥(n) = n xfn)
—i

Answer For the two arbatrary inputs x)(n) and x3(n) the outputs are
yi(n) = T[x1(n)] = o x1(n)
 ya(n) = T[xxm)] = o xx(n) |
For the weighted sum of inputs a) xj(n) + a3 x2(n) the output is
ya{a) = T[a, x;(g) + a;x2(a)}= n (a) x;(c) + a3 x2(n))
= a0 xj{n) + a3 o x3(n)
= a) y1{n) + a; ya(n). Hence the system is linear.

|
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DIGITAL SIGNAL PROCESSING UNIT 1

Shift-invariance (fime-invariance)

Definition A discrete time system y(n) = T[x/n)] is shifi-invariant if, for all xfin) and all ng. we
bave: ITxfn—sgf] = yin-ny).

This means that applying a time delay [or advance) to the mnput of a system 15 equivalent
to applying it to the output.

%(n) M) yin) = Tfxfn)f
The - procedure for determining shifi-

MiAMANCE 15°

Step 1. Determine cutput yfin) corresponding fo input x/n).

Step 2. Delay the output vl by npunits, resulting in vl

Step 3, Determune output ¥, ip) comesponding to inpul xi—+gl

Step 4. Determune of win, ng) = vr—gh I equal, then the system is shift-iovariant;
otherwise it 15 ime-varyng.

When we suspect that the system 15 tme-varying a very useful alternative approach is to
find a counter-example to disprove time-imvariance, i e, nse inmition to find an input sipnal for
which the condition of shiff-iovaniance 15 viclated and that suffzces to show that a system is oot
shift-invariant,

Example Test if yfin) = Txfn)] = x(=n) is shift-irvanant.

x(g) - ¥(n) = x{-n)

Anywer Find output for x(n), delay it by oy, and compare with the output for x{n-ny). The output

for x(a) is
yi) = Thx(n)] = (=)
Delaying y(n) by oy gives
y(o-a) = x(~(-5)) = X(~a+8g) — (A)

As an aside this amounts to reflecting first and then shifting.
The cutput for x(n-ng) is denoted y(n, ng) and is given by
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¥in. ng) = T[x(o-n:)] = x(-0-m) — (B)
As an aside this amouats to shifting first and then reflectng.
(A) and (B) are not equal. That is, y(n. ng) = y(o-ng). so the sysiem is ime-varying.

Example Examdne wn) = ITximi] = x(n) = o x(a+1) for ime mvanance,
Amswer Notice that the difference equation las a time-varving coefficient, n. The output o)
comesponding to x(n) is already given above. Delaying y{n) by oy gives

i) = x{a-n) + (a-00) x(z-05+1) — ()
Compare with y{n. ng) = T{x(n-n0)] = x{o-05) + 0 x{o-0g+1) — (B)
(4) = (B) 5o the system s time varying.

Example Check for time myvaniance of the system wWa) = )] = o xis).
Answer We shall do this by counterexample(s) as well as by the formal procedure. The formal
proceduse is:

¥{n) = Ixfnj] = o x(a)
Delay this by n; to get y{a-aq) = (a-2) x{a-o) — (A)
Compare with y(z. ) = T[x(2-n9)] = 8 x{8-ny) — (B)
Since (A) = (B). the system is ime-varying,
Convolution
An arbitrary sequence, 1im), can be wnitten as the weighted sum of delaved unit sample

functions:
xfm) = .= xf{=2) dfn+2) = x{=I) dfn+1) = x(0) &fn) = x(l) &fn=1) + ...

= ¥ (k) d(n - k)

===
So the response of a linear sysiem to inpul i) can be written down using the Lneariny
principle, L&, hnear superpesition. For a linear shift-invanant system whose impulse response 15
T[é¢n)] = hin) the reasoning poes like this

¢ For an mwput &fn) the ontput is hfn), For an iopet x/0) afn) the owtput is x(0) ki)
by vrtue of scaling,

« For an input 5(n—1 ) the 15 hfn—=1) by virtoe of shifi-imvanance. For an input
xf1) éfn—1) the output is x(1) hfn-1) by viree of scaling.

¢ Therefore for an wxput of x(@) afn) + x(l) oyn—1 ) the cutput is x(0) kin) + xfi) hin-
1) by virtoe of addativaty.

11
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This reasoping can be extended to cover all the terms that mabe wp 1), In peneral the
response 1o X7kl afn—k) is givea by ok hin-k).
| rSISymem | TSI =htn)

— T0] —

) | LsISystem | T =)

' T[] *

Cirven that
hin) = T[éfn}]. and  xfn)= 3 x(k)S(n—k)

yi) = Tixfn)] = T [ 3 x(k)d(n- t}]
Since TT.] is lhunmm:pplylinﬁuil}‘ammuhle infimte member of thmes to write
yin)= 3 T{x(R)5(n-K)) = ZHRTTS(n-k)]

i==a

In above equation since the system is 'hlh.ﬂ-un‘intﬂ we write T[H{a—k)] = hin=k). Else wnite
hafn) or kin, k) in place -::l‘hfn-k} Thus for a linear shift-invaniant system

yiny=' 3 x(kyiin—k)

Note that of the system is nof specified to be shuff-invanant we wounld Jeave the above
resulf in the form

yim) = i.ﬂﬂh{mk} ar waix{k}h.{nl

==
Then if shift-iovanance 15 invoked we replace hifn, ki with Fin—%)

As m the case of confimious-time sysiems, the impulse respense, hin). 15 determuned
assuming that the system has no initial energy; otherwise the linearity property does not hold. so
that yfn), as determined nsing the above equation, comesponds to caly the forced response of the
system.

The sxm E:{i}hﬁn.i} 15 called the convolution sum, and is denoted xin) * hin).

b
A dizevete-time linear shifl-imariant syztem is completely characterized by its unit
sample regponse hifin).
Theorem If a discrete-time svetem lnear shaft-mvariant, T[], has the vt sample response
Tlefn)] = k) then the muaput}m) v:u-rupmding fo any mpit xfm) 15 @ven by

¥im) = TI{HﬁEH-k.'I' ZJ{H Hhi#]

l.-—- =
I

= xfn) ). hir) "II""J * xfn}
12
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The second summation is obtained by setting m = p—k; then for k= —x we have m=+x, and for
k= = we have m=-x_Thus

3 x(k)h(n-K)= T xtn-m)h(m) = 3 x(n-k)h(k)

i m=m AeW ===
'k._v_)'

w12 3 duswny venahle, The order of nemmakon

(feernard or backoosd) make: po diffmence.

Hezee chares m to kaed sottch heats

Example [Linear Convelution] Given the input {xfnj} ={1,2, 3, 1} and the unit sanple
response {hfin)} = {4, 3,2, 1} find the response yin) = xfn) * hyin).
Answer Since x(k) =0 for k < 0 and kfn - kj = 0 for k> n, the convolution sum becomes

Y= 3 x(k)h(n-ky= 3 x(k)hn~K)

f==n =g

Now yfn) can be evaluated for vanious values of n; for example, setting n = 0 gives y(0). See
table below. The product terms shown w bold italics need not be calculated; they are zero

because the sipnal values involved are zero.

Linear Convolution of {x(n)} ={1, 2, 3, 1} and {h(n)} = {4, 3, 2,1}
¥(m) = 3 x(k) h{n - k)

k=0
-5 & -
I EORD R OLCS SO
=1 —=(0) B{1) = =(1) B(0)

1
HIJ-Eﬂ*}hﬂ-*} ] 3+7_4m]]

1 = i) ==z k(1) - hiD
MJ'Eﬂflﬁﬂ-*l -1_15?_31{3..5-]:;&} ;

i = x(0) B[3) — x(1) BL1) — %2) B ) = %(3) B(0)
!lﬂ']'Eﬂ'-'}ﬁE;—ﬂ mf. ]+2.2+3 . 3=1. 4=18

b=i
] = {0} hi'd) + x{1) h{3} + =[T) {2} + x(3) B{1} +xfd) b}
Hﬂ-EﬂﬂﬁH—*}l =, n-ql-z Q%3 2=], 3+0,4=]1

= X10) hi3) = X(1} h{d) + x[2) b{3) ~ R[3) BiZ) + X4} hid)

1

V5= gﬂ*lﬁﬂ = k) = xi 5} hidy
m3_ 1+]. 2m3

) = X10) W6) = x(1) R3]+ x02) 4} = x(3) B3} = xf4) 2}
) 'Eﬂtmﬁ' B ;r *Ilr-‘: hidi +xiéh b

7 = xt0) oy 73 = 73] W1E) + xe2) ) = xy3) i)+ X b
}W'Eﬂ*}ﬁﬁ—ﬂ a x P 5} g2y + afB) Rpdp + xd T} bl

=

a=7

yol=0foro<Qando =6

13
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Cansality

The constraints of linearity and time-invarniance define a class of systems that is represeated by
the coovolstion sum. The additional constraints of stability and causality defime a more restricted
class of linear time-invariant systems of practical importance.

Definition A discrete-time system is eansal if the cutput at n = ny depends only on the input for
"<y

The word “cansal” kas to do with cause and effect; in other words, for the system to act
up there must be an actual canse, A causal system does not anticipate funure values of the mput
but only responds to actual, present, input. As a result, if two inputs to a causal system are
wdentical up to some point in time ny the comesponding cutputs must also be equal up to this
same time. The synonyms of “cansal” are “(physically) reakizable™ and “non-anticrpatory™.

We digress below to introduce memory-less versus dynamic systems and then resume
with cansalsty.

Svstems with and withent memery A system 15 said to be memorv-less or static if its
cutput for each value of n is dependent only on the input at that same time but not on past or
funure inputs.

Examples of static systems

1. ymj=xfn)  — the identity system
2. ym)=axin)-x(n)
3. Aresistor B: wit) =Ruxijt) (yff) is voltage and xf?) is cuzrrent)

In many physical systems, memory is directly associated with storage of energy. A
resistor has no storage of energy. But a caircnat wath capacitors and’er inductors has storage of
energy and is a dymamic system. ie., has memory. However, while storage of energy has to do
with past impufts caly, a statw system 15 indspendent oot caly of past but also of firmmre inputs,

Examples of systems with memeory, i e, dynamic systems:

1. yfnp= 3 x(k). This is an accumulator or summer. The output y(n) depends on

vahoes of x( ) poor to n such as xfin—1) etc.
2. yin) = xfn-I). This is a delay element.
3. A capacitor C: ity = %— _[:.'{r}d: . () 15 voltage and x1.J i5 current).

Gettmg back to causality, all memory-less sysfems are causal smce the output responds
caly to the curreat value of the input. In addition, seme dynamic systems (such as the three listed
above) are also cansal

An example of a noncausal system is v} = xfmn) + xyn—1) since the output depends on a
foture valoe, xin+1).

14
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Although causal systems are of great importance, they are not the caly sjstansﬂulmnf
practical importance. For exaple, cansality is not often an exsential constraint in spplications in
which the independent variable is not fime, such as m image processme. Moreover. 1o processing
data that have been recorded proviously (non real-time), as ofien happens with speech.
peophysacal, or meteorolopical sismals, fo mame a few, we are by no means constraned fo cansal

processing. As another example, 1o many applications, mchuding hisrorfeal stock market analysis
and demographuc studies, we may be wterested m deternuning a slowly vanang trend in data tha
also contain higher frequency fluctuations sbout that trend. In this case, a commonly used
approach 15 1o average data over an mterval in order 10 smooth out the fluchuations and keep caly
the trend. An example of such a noncausal averaging system is

yin)= Z x(k)

M +1 ,

Definition A discrete-tume sequence xfn) 15 called cansal 1f it has zero valoes for n <0, Le. xfn)
=0forn <0,

Theorem A linear shift-invariant system with impulse response hin) is causal if and only if hin)
is zero forn < 0.

Proof By convoluticn the output y/n) is given by
yinj= 3 x(k)h{n-F)

I£h(n) = Oforn <0, then hfr-t) = 0 for n—k <Oer k> . So
¥in) = thﬂhtﬂ-t}H Zr{tlh{n-tl

f=ma=]

= -

g™

=0

= 2 x(k)h(n-k)
| m=x
Thuss yin) at any tzme 15 a weighted som of the values of the inpat x(k) for k< n, that is, ealy
the present and past inputs. Therefore, the system is cansal
Bounded input bounded output stability

Definition A sequence xin) 15 bounded if there exists a finite A such that [xfm)| < Af for all n.
{Mote that, as expressed here, M 15 a bound for negative valoes of xi ) as well. Another wary of
writing this is =Af < xyn) < M)

As an example, the sequence xin} = [1-cos Sam] ufn) 15 bounded wath frim)| = 2. The
sequence xin) = [%J un) is unhounded,

15
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Definition A descrete-time system 15 bounded mput-bounded cutput (BIBO) stable if every
beunded input wquence xfn) prodoces a bounded output sequence. That i, of rfn)| <A < =, thea
Ml sLl<=

BIBO stability theorem A Linear shift imvariant system with imgpulse respease ki) is bounded
iput-boumded output stable if and cnly if 5, defined below, 15 fnite.

5= i]n{t]] <=

i==

i€, the unit sample response 15 absohdely summable.

Froof Grven a system with mpulse response ki), let xin) be such that foing| =
M. Then the outpot vinj is given by the convolotion sum:

yimy= 3 h{k}x(n - )
o
=0 that

i = Li (k) x(n - lr)‘

Using the trisngular inequality that the som of the magnitedes > the magnitude of the som_ we
et

pnps 3 Jhckctn— k)

==

Using the fact that the magﬂ.imde of a product is the product of the magnindes,
pimp s X [E)]fetn - k)

B = i

=M Iép.{tj

Thus, a sufficient condition for the system to be stable is that the unit sample response must be
absohately summable; that is,

S |hiky] < =

i ==
Example Evaluate the stabiliny of the Loear shift-invanant system with the vast sample
response hin) = a” wfn),
Answer Evahate

- ot Sl Zoi 1

Here we kave used the fact that the magnimde of a product (a') is the produst of the magnitudes
{}nﬁ.Thamﬂimmm:i{h comverges if ja] < 1 so that § is finite,

=

and the system is BIBO stable.
16
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Fourier analysis of discrete-time signals and syvstems

Note For the discrete-time Fourter trans form some amhors (Oppenheim & Schafer, for inctance)
use the symbol 17} while others (Proakas. for instance) use the symbel Xieo). The symbol o is
used for digital frequency (radians per sample or just radians) and the symbal £ for the analog
frequency (radians’sec). Some authors, on the other hand. nse just the opposite of our
convention, te is, o for the analop frequency (radians’sec) and £ for the digital fequency
(radians).

Discrete-time Fourder transform (DTET) For the contimmons-tume signal xit), the Founer
tranafiorm is

Flxit)} = Xy2) = F.ﬂ,r} e

The impulse-frain sampled version, ©,7), 15 given by
xfty=xit) 3 &(t—nT)

So the Founier transform of x.47) is given by
Xf@= [x,(0e ™de = | 1 x(1) S (t—nT) | dr

=

- i:{n]"}a"'ﬂ"

where the last step follows from the sifling property of the & function Replace OT by o the
discrete-time freqquency vaniable, that 15, the digital frequency. Note that £F bas vaits of
radians/second, and e has units of radians (fsarmple). This change of nofation gives the discrete-
time Fonrier transform, Xrw), of the discrete-time sigmal xyn), obtaned by sampling x?), as

Xie) = Fxm)} = 3 xm(m)e™™
Note that this defines the discrete-time Founer transforms of am- discrete-time sipnal xfn). The
transform exists if x(n) satisfies a relation of the type

Tt <o or  Xlatn)
These conditions are sufficient to guarantee that the sequence has a discrete-time Fourier
transform. As in the case of continuons-time signals there are sipnals that neither are absolutely
summable nor have finite energy, but still have a discrete-time Fourier transform.

¥
-

Discrete-time Fourier transform of (non-periodic) sequences The Founer transform of a
general discrete-time sequence tells us what the frequency content of that sipnal 1s.

Definition The Fourier transform X7e™) of the sequence xfin) is given by
Flxm)} =Xre) = 3 x(n)e™= —(A)

The inverse Fourier transform is piven by

17
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b
F{Xfw)} =xn) =1L_ f.l'{e*“}r*"dr-:r —(B)

Equations (A) and (B) are called the Fourier transform pair for a sequence xfn) with Afaw)
thought of as the frequency content of the sequence xfn). Equation (A) is the analysis equation
and equation (B) is the synthesis equation. Since Yjes) 15 a peniodic function of e, we can think
of xin) as the Founer coefficients in the Founer senes representation of Xfw). That is, equation
(A). m fact. expresses Xfw) m the form of a Founer senes.

Example For the exponential sequence xin) = a” ufn),
la] = 1, the DTFT is

X(e') -in' o™/ -iine‘-" [ =
well

1 1
l-ae™® 1-alcosew— jsme)

We shall put this in the form Yye= Magninde {X} e/ =| X{e)] ¢*"™ from which the
magnitude and phase wall be extracted. The denomunator (Dr.) 15

. S )
Dr.= l-acos@+ jasine = |J(l-acos ) +a’sin’ @ @ Pt
Thus
Xiw) = Nie)| <= 1 e =
..lIr[I +a’ - 2a cos o)
The magnitude and phase are:

1 gl asme ]

L Xfea)| = - and  /V(o)= —tan™| ———
Jﬂ-!-:r‘—!nm::r} \1-acose |

Plots of |.\] and LY are shown. Note that Xiw) is peniodic and that the magnitude 15 an even
function of e and the phase is an odd function. (See below on the notation LX] and 2X ).
The value of X(e™®) atw=01s

. 1 ]
’ -Jacos0) 1-a

'-'""H...n = -JII:I-!- =

nsin-L‘l. '
1-acos0
Similarly, at &= zwe have [V(0)]_ = 141+ a) and LX(0) _,=0.

=0

LX)y = - ru“[
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Frequency response of discrete-time system

For a binear shifi-iovariant system with impulse response hn), the Founer transform Hiar) gives

the frequency response. Consider the iput sequence xfn)= ¢ for—= <n< x,ie. 3 complex
exponential of radian frequency o and magmtude 1, apphed to 2 hnear shuft-mvanant system
whose unit sample response is hin). Using convolution we obtam the output yin) as
¥im)=hin} * xin}= Zh{t}x{n -k)= Zh{t}e—"[’" = ¢'*" Ih{#} "
b= =i == [ P
Hiea)

= Hies) ¢'*"

Thus we see that Hyew) describes the change in complex amplimde of a complex exponential as a
fonction of frequency. The quantity i) 15 called the frequency response of the system In
w. Hiea) is complex valued and may be expressed either in the Cartesian form or the polar
as
Hye) = Hyfea) + j Hyfe) et Hiw)= H(a)
where Hy and Hy are the real part and imagmary part respectively. Hic)is loosely called the
magnitude and /¥ (p) is loosely called the phase. Strictly spuakin_z-ﬂ'{r—.:]js called the zero-
phase frequency response; nofe 'r.'n:tf;"{m}i:. real valuad but may be positive or negative. We
may use the symbol [Hye )| for the magnimuge winch is stnctly oon-negative. It'.’i'{r:] 1% positive
then
Magnitude = |H{es)|= H(e) &  Phase=/FHig)
If H(e)is pegative then
Magnide = [H(o)|=|H(c)=- A(c) &  Phase=LH{o)2x
We shall often loosely use the symbel|H ()| to refes to B () as well with the uvaderstanding

that when the latter is pegative we shall take its absolute valpe (the magnimnde) and accordingly
adjust /H(g) by=x.

Ezample [Moving average filter] The impulse response of the LTI system
= X(m)+x(n=1)+x(n-2)

yim} 5
is
hfmj=| 153, m=0,1,2
0. otherwise

18
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& hin) = (173)[ufn) = win=3J]
l."!{;. T T
e
o 1 2 3

The frequency response is obtaned below.
Hfea) = i (k)™ = Er{] [3)e ™ = ;_ (o710 o giwl o vl

| == i=0

B el AN Y a9 ]I'.r“".n."-"'r'_ (1+2eoser) _
B Thailihiaadi |1+ ) g 0
wehich is already in the polar form H{e)== |[H (o) =), so that
|H(es)] = A+2cose}/3  and LH(w)=-w
The zero crossings of the magnitde plot ocenr where [H(o)| =(1+2cos ) /3 =0,0r e
= cos (-1/2)=2z3= 120%. A freqquency of @ = 2x'3 rad fsample (= 173 cycle/sample) is
totally stopped (filtered out) by the filter. The corresponding digital signal is x5/n) = cos
2x(1/3)n. The underlying contimuons-tine signal. xyff), depends on the sampling frequency. If,
for example, the sampling frequency is 16Hz, then xyt) = cos 2a(16/3)r, and a frequency of 163
Hz will be totally filtered out. If the sampling frequency is 150Hz, then xyt) = cos 2a(150/3)s,
and a frequency of 50 Hz will be elinunated.
In calibrating the honzental axis in terms of the cyche frequency, F, we use the relation
@ = QT = 2aFT = 2aF/F, from which the point & = 2x comesponds to F=F..

4 |H]=(1+2 cosm)’3

E'..d_
L
=g

20
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4.11 Realization of digital filters

Griven Az, the svstem function, or A, the impulse response, the difference equation may be
obfained. This dulference equation could be implemented by compurer program, special prrpose
digital circuitry, or special programmable integrated circuir. This direct evaluation of the
dafference equation is not the only possible realization of the digital filter. Allernative
realizations of the digital filter are possible by breaking up the direct realization in some form.

Dvivect Form realization of [IK filters An important class of linear shift invamant systems can
be characterized by the following ratienal system function (where Xiz) is the input, Iyz) the
outpud and we have taken gp= | in compansen with the earlier representation):

LF}
B
Hr:.l'-”:}- by+ba™ 4l T el 2 IE_I-J-
Xz lear ™+ a3z a2 1o 3 g

k=l
By cross mmultiplying and taking the inverse =-transform we get the difference equation
yinp==3 a,¥n=k)= 3 bxin-r)
=1 F=g

=gy yin=1) —az yn=-2) —... -axyin-N)
+boxin) + by xin=1) = ... + buzin-A)

To construct a flker strochare we shall need three fypes of block diagram elements; a delay
element, a multrplier and an adder, illustrated below:

Yini= ximi— agpin=1)
Tiei=s Xizi=a " Fiz)

) S0D sl T apiel) )
i) S T e

apyin=1)
ar :"J-'r:)

We can construct a realization of the filter called the Direct Form [ by starting with vin) and
penerating all the delayed versions yin=1), wn=2), ., win=N]; similarly starting wath xn) and
generating all the delayed versions xfn-1), xin=2), .., xfir-A). We then multiply the above terms
by the respective coefficients and add them up. This is shown below (next page).

This is an N order system N being the order of the difference equanion. There is no
restriction as to whether S should be Jess than or greater than or equal to N. The total oumber of
delay elements = (N=Af). It is not in canonic form becanse it uses more than the minimum

possible nuember of delay elements. It is called “Direct Form™ becanse the multipliers are the
actual filter coefficients {ay, ay ..., ax ba by, by ..., bug.
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The difference equation of this realization (or structure) continues to be

yin) = =y yin=d ) =13 yin=2} =... ~ay yiir=N)

g

N multplications
- ju:fn} = by xf=) + ... + by xin-M)

g

(Af=1) mulnplications

and will be referred to as the Direct Form | difference equation. The total number of
multiplications can be counted and is seen 1o be (N<1/<I). We can also count and see that there
are (N'=Af) additions. Finally. to calculate the value yfn) we need to store N past valoes of v7).,
and Af past values of x/_), that is. a tofal of (N'+Af) storage locations (storage for the present value
of x/ ) is not counted).

Direct Form [
Pick-off
| /“‘“"““ Adder Pickoll
pommt
xfr) t et . . % -
L Delay
! element
by
xin=l} ym-)

bixin=1)

£ b —T £
-2 yin=2)

A delay N* delay
element I i element
N
xfir-A) e

Burxim=A} ==}

Multiplier

Bearrangement of Direct Form I The above diagram of Direct Form L or the commesponding
expression for A7z, is sometimes rearranged as below, This shows viswally that the transfer

23
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function Hyz) is arranged as a cascade of an all-zero system, Hxz), followed by an all-pole
sysrem, Hy(z):

HE -—”:}-[ﬁb.-'*] — | =HEHE
E - z 7 A=) Hilz
I \S 1o o

Im]

s Jd )
L v

Hiz) Hyiz)

The overall block diagram then is shown thus:

X iz ¥iz)

Hifz) —

—_ Hsifz) &

Thie all-zero system is Haz) -WTT% - [igr;-l] from which, by cross-multiplving and
k= k=g
taking the inverse o-transform, we gel the difference equation below:
)
Wiz) = Hyfz) Ir:;-.l?:;[}; .:"]
bm

win) = boxin) = by xin=l) + ... = byxin-M)

X2 myz)
—_— Hif2) —
The all-pole system is Hy2) . l,‘l from which, by cross-multiplying

LLC I Taz

and raking the inverse z-transform, we get the difference equation as below:

¥E) = Hifz) W) = e) | ——

1+ ¥ a,: 3
I=]
yim)=win) —ay ¥in=1) - a; }n-2) —... — axyin-NJ
24
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Wiz ¥z

—_— HIITJ' —

Even though it seems that there are fvo equations, one for win) and another for vyn), tere is, in
effect, cnly one since win in the second equation is simply a short hand notation for the first
equation and can be eliminated from the equation for yfh).

Orverall, the Direct Form I has the following alternative appearance:

xfn) = winl n}
-9 _D LQ @ . ? .
! by - z
A ONNOSS
3 3 =

A

H=) (All-zero System) Hy=) (All-pole System)

Derivation of Direct Form IT The transfer fanction 572/ can be written as the product of the
two transfer fimctions Hyis) and & i=) as follows where we have reversed the sequence of the
two blocks:

Hr:i-ﬁ- 2 [Eﬁ —"*]-H:r:w;r&;

1+ F g,z | b=t
b=l

| S —
Hyiz) Haiz)

25
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Xiz) Piz) ¥z
—_— i) s HAD)

Pz} = Hyf2) Xiz) = | ——— | X¢z) 204 rr:-,l=H:f:iPr:J-[ia :‘*]H:J

1+ ¥ a,= =t
k=l
Cross-multiplving, uhngﬂnmm Z-trans form uflhe above two and rexrranging. we have
Pinl = xfn} = E a el —k), and  yfn}= Eb,p{rr r)

k=1 Fal

The two equations are realized as below:

o) TN P
\E) !
7!
=iy
€
: B
=z
5

Hyz) (All-zero System)

Hyiz) (All-pole System)

The two branches of delay elements in the middle of the above block diagram can be replaced by
just one branch containing either N or M (whichever is larper) delay elements, resulting in the
Drrect Form Il shown below:

In the above diagram each colomn of adders on each side can be replaced by a single adder
resulting in the more familiar form shown below. There are pow only two adders,
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Diirect Fogm I
xin}

YL,
=1

z
=4

Pl

=1

N* Delay

* p pin=Ni

The number of delay elements = mux [N, M} = this is the mininum possible, hence called
a canonic form. The multipliers are the actual coefficients from the difference equation. Hence
this is also a direct form.
The numbers of multipliers and adders are also the mininnam possible, but this does not
mean that it 15 the best realization from other considerations like immunity fo round off and
quantization £mors

The difference squations are:

pim) = xfnl—ay pfn—I) —a: pin-2 —._. —ax pin=N) , and
yin) = bapin) + by pin=l) + ... = by pim=M})

27
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The above equations show that in order to generate yin) we need the present vahee of 17)
and N {or M or whichever is larger) past values of pil), This requires A storage locations not
countng the present value of 1y ). We alto see that the number of muoltiplications = N=Af+1, and
mamber of additions = M=11.

Companng the difference equations of Direct Forms T and 1T

* Tocompute yii) in DF I we need the past N outputs, the present input, and the
past Af mputs.
«  Tocompute vl in DF IT we need the N {or M) values of pinki for k=12, N,
and the present inpuf.
Thus illustrares the concepd of the state of a system.

Froblem:

Develop a canonic direct form realization of the transfer function

6:z' +82" -4
27 +62° +102° + 8z
Solution Write numerator and denominator as polynomials in negative powers of - with the
leading term (ap) in the denominator equal to 1

2 (6+8z" =4z = (6+8z" =4z
2(2+627" #1027 +827")  (2+627 10270 +827Y)

(6+82" =4z7") Jrdzr? =227

N 2+3z7 +527 +427Y) i 1+3z7 4527 477

Hiz)=

Hizj=

Making the followimng companion with the standard ootaton
O B EalY b bt EE I o il
I=ar” =a,r™ +a 1™ =a,r j S e T A
we identify the following parameters:
bp=3 by= 0, Bsmd By=0, by=0, by==-2
gr=3, ar=5 ga=0, ga=4d
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Yinj

i g "
!

EV
"

=4 (=)

Problem:
A system is specified by its transfer fonction as
(z—1Mz-2)=z+1)z

-G

Realize the system in the following forms: (a) Derect Form I.. :nd o) Dut:t Form IT

Solution We peed fo express Hiz) as a ratio of polynomials in pegative powers of - with the
leading term (ag) in the denominator equal to 1, Multiplving out the faciors in the pumserator and
denommator and I't':l!.'I:I.I'.'I.EI.I:I.g

B = L5
R P P S P T e
[' "*E][' +l] 1=z et~ ey

Hiz)=

-Bz* -2 1-227 2% 527
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=132

LUMIT1

Cascade realization of ITR filters Many different realizations exist depending on how we

choose 1o write and rearrange the prven transfer fimetion. Twe very important ways of

decomposing the transfer function are the coscade and poralle! decompositions,
In the cascade realization A=) is broken up info 3 product of transfer fiumctions &, A

., Hi. each a rational expression in =™ a5 follows:
pio]
X(z)
so that 1) can be written as

Yiz) = Hyz) Hyafz) .. Haz) Hytz) Xi2)

= Hiz) = Hyz) Hyaafz) ... HafZV ()

Yain} o)

» i) o Hiz) —
Xz

Hiz)

oy

¥iz)
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Although izl conld be broken up in many different ways, the most common cascade
realization s 10 requinre each of the & product 5 s 1o be a bignadrarc secmon. In many cases the
design procedure vields a product of biquadratic expressions so no further work is necessary to
put Hiz) in the required form. The product terms A=) could take vanous forms, depending on
the acrial problem. Some possible forms are

b +h
Hyfz)= = z) = T
& lea;z? wa,z7 ) leg:z +a,27
. b g ot
.H"r':j = b‘ﬁ' & -bf:_‘ ks b.!-_i- Hrfﬂ = M
1+a;:
== ="
Rif= 2205 20 Biuadaic

I#a:" +a,2™

b, +b=
Hiz)= -ﬂ_—:l_.—. {Bilinear)

Each of the iz} could then be realized using either the direct form Jor IL

Dnfferent structires are oblained by changing the ordering of the sections and by
changing ihe pole-zero painings. In practice due fo the finite word-length effects, each such
cascads realization behaves differently from the others.

Prablem:

Develop two different cascade canonic realizations of the following causal IR
transfier function

H0.3x=0.5K2z+3.1)
Hiz)= ‘1,:0
= (2" +2 1z -3Yz=0.6T)
Solurion Write in terms of negative powers of 2.
Hizp= =2 7 (03-052")2+3.127Y) __(03-05:)2+3.1:7)
2217 = +06727) (4207 =32TNL+0.6727Y)
Two (of several) different cascade arrangements, based on how the factors are paired, are shown

below in block diagram form. Note that the intermediate signal vyin) is different from the
intermediate signal yzn).

Caseade = A
xn) | 03-05:" ¥uin) 243.1:" | ¥onl = yim)
14217 =327 | 1+0677
Cascade = B
xfn) 243127 yim) | 03-05:7 | yedn) =yin)
I EFSEER T 1+ 067 '

31
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Cascade A is shown below using the direct form 11 for each block separately:
0.3

~ 1
|
67

Cascade B is shown below using the direct form IT for each block separaely:

Fafml

xfn} ..f-;“'l.

32
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Note in this example that if Hi=) = é::: ig‘é ; then depending on the pole-zero pairings and the
sequence order of the blocks in the cascade we can have 4 different implementations (stractures).
These are equivalent from wnput to outpu? though not at the mtermediate point between the
blocks. Moreover the quadratic (- = 2.4 — 3) has real roots and so can be split info two factors
exch of which can be combined with the other factor (- = 0.67) in the denominater. This resulis
in more than the 4 struchores shown bere.

Aiz) | Bz A(z) | B2)

: =) I : * D(=) (=) '
B(z) A=) h B(:) A=) .
Ciz) | B | D=y 1 =) .

Farallel realization of ITE. filvers The transfer function Hiz) is written as a2 sum of mansfer
functions Hyz), H4Z), ..., Hy) obtained by pantial fraction expansion:

% = Hiz) = Hyfz)+ By + o + Hoals) = Hi2)

Thus
Yo = Bz Xizh = [Hifz) + Haz) = ... = Hypfz) = Hyzl] Xiz)
= Hiz) Xizd+ Huz) Xiz)= ... = Heafz) Xiz)= Hvz) Xiz)

and 15 shown in bleck diagram fashion below. Note that the outputs vafnk vond, ., v are
independent of each other; they are not coupled as in the case of the cascade structure,

Based on whether Hiz)t or Hiz) is the starting point for partial fractions we have parallel
forms I and IT (5. E_ Mitra). Both of these methods are illustrated below.

Hy=)
He)
| - i)
. H e
46 ' Fizh

Hyz)

Hiz)

EE
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Problem:

Obtain the paralle] realization for
82! =42 +11z=2
Hicl=
A= mamF-z<a9)
Solution For the Parallel Form I we expand A=) Note that m the denominator the factor
(=* —z+(1/2)) represents a complex conjugate pair of poles at ((1/2)+ j(1/2)).

Hl{:'_l gz’ -4z 4112 -2 .-I B . Cr+D
: (- —2+0Y) = (z-04) (& -z+002))
B4 +l-2 | -2

& (=== - -+{1r1}j:_| (=L/4)(1/2) -
8:' -4z 41122
E e V)
To determine C and D
B =42 11z -2
2(z =/ N’ =2 Q/2))
_ Az-@lE —2+0/ D)+ B2lz’ -2+ D)+ (G + DY2(z -0/ 9)
H(z-Qr))* -2 +0/2))
Puiting A = 16 and B = B, and equating the numerators on both sides
B =i x]lr=2
- 16z =01 9zt =z =/ D)+ Bl — 2+ QU D)+ (G + DYz (z =1/ D)
Equating the coefficients of like powers of - on both sides we have
=% B=1§=8-C — =]
= =2 = 16 (=1/4) (1/2) which is an identity == doesn’t help
o N =160+ 16 =1 -1+ 8 (1) - Di-1M4) —D=20
Therefore we have

B=

H(z) _ g (-16)z +20
= = 1-:1x-m [ -+ (/)
HE) =16+ e & A0 202)

road) Fored )]

8 _-ls+20:7

Hiz)= 16+ =
= 1=0252% =t 40523

= Hi(z) + Hxfz) + Hilz)
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The comesponding parallel form I diagram is shown below,

Jsfm)

={.5

Realization of FIR filters A causal FIR filter is characterized by its transfer fanction H(z) given
by

%=Hﬁ}=ib,:" =g+ by = L+ bye™

of, by the corresponding difference equation
Ly
¥in) =3 b x(n—r) =byxfn) = byxjn-1) + byxin-2) . + By xfn-Af)

rei

Mote that some use the notation below with Af coefficients mstead of Af = 1
-]
yinl = Eﬁ',ﬂ” =r) = bgxin) + by xin=1) = bz xfn=2} ... *= bypp Xin=M=1)

Pl

We see that the output v is 2 weighted sum of the present and past input values; it does not
depend on past output values such as ywn=/ ). etc. The block diagram 15 shown below. It 15 also
called a tapped delay line or a transversal filter.

35
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yin

It can be seen that this 15 the same &% the durect form I or [T shown earher for the IR filter, except
that the coefficients a; through ay are zéro and ag= 1; further the delay elemients are arranged m
a horizontal line. As in exrlier dinprammatic manipulation the multipliers can all feed into the
rightmost adder and the remaming adders removed.

iOther sumplifications are possible based on the symmetry of the cocfficients (b}, as we
shall see in FIR filter design

Cascade realization of FIR flrers The simplest form occurs when the system funchon is
factored in terms of quadratic ﬁplessiuusin:" as follows:

' I

Hiz) =TT Hz) = [(8, +B,27% +B,2)
imb ]

Selecting the quadratic temms 1o comespond to the complex conjugate pairs of zeros of Hiz)

allows a realization in terms of real coefficients do. by and bz Each quadratic conld ihen be

realized using the direct form {or alternative struchures) as shown below.

17
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a
- x(n) e /=" AW2 Rk w0,1,2,3

Fork =0

3
K(D) = E x(n)m= 1

Fork=1

a
x{!_} - E w{mn) rw_.i‘llrtl:llr.ﬂ:

"o i
=14+ 0.70Te”™ 4 0+ (—0.70T )22

= 1 4+ (0.TOT) (=) + 0 = (0. 7TOT) (i)

Fork=2

X(2) = 3, xln)e /MO0 = ¥ pin)emixn

AE=m Am =

=1+ (0.707) &¥* + 0 + (- 0.707) 73"
=14+(0.707)(-1)+0+(-0.70T)(-1)=1
Fork=3

3
X(@3)= ¥ z(n)efriana

n=0
=1+ (0.707) e¥3%2 4 0 4 (- 0.707) /952

=1+{0.T07) () +0+(=0.T0T) (=) =1+ 1.414
Xk)=11,1-j1.414, 1,1 +j 1.414)

Find the N-Point DFT for xin)=a" for0<a < 1.
Solution The N-point DFT is defined as

=

i
Xk)= ¥ xin)e/2==tN p=p,1,.,.N-1,

m= 0

N=1
- E a® E-]Elnh"”

- hf'l (aefambiNy®
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1- (ne 42" (Y :IH

[ _J
1-—as 14"

1-a®

x{kltm.knﬂl.m.”—l

Derive the DFT of the sample data sequence xin) =
i1, 1, 2, 2, 3, 3] and compute the corresponding amplitude and phase
apectrum.

Solution The N-point DFT of a finite duration sequenee x(m) is
defined as

AN =1
X(k)m 5 x(n)e 2 WV g=p,1,...N=-1.

Fork =0

-] =]
X0 =3 x(n)e 308 o % xn)=1+1+2+2+3+3=12

m =0 A=

Fork=1

.‘K{l] - i :{ﬂ} '—Jﬂﬂﬂlnﬂi

&
- Z xin) g Sunlra

w0
=l+ed B dIND L 9 A% LG eIV L g B

= 14 0.5 =j0.866 + 2(=0.5 —j 0.866) + 2(= 1)
+ 3(~0.5 +j 0.866) + 3(0.5 + j 0.866)

Fark =2

X(2)m 3 x(n) e riInre

- i -"[ﬂ-} !—=J!Hf=

=D
=] 4 e VIV, QeI DI , Jp /BN ge-/M0RA

= 1+ (=0.5) =i 0.866 + 2(=0.5 + j 0.866) + 2(1)
w3 (=06 =F0.866) + 3(=0.5 + j0.866)
= = 1.5 + j 0.866
Fork=23

]
X(3)m ¥ xln) g~ /3530l

L

= i x(n) g~ /%"

]
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=1 4o BadE, 0ot gein, geolin
=1=1+2(1)+ 2(=1) + 31} + A=1} =0

Fark=4

&
x[_‘] - E !{ﬂla-jllf-l}rlﬂ

L]
- E ﬂﬂ} E-jll-llﬂ

A=
ml eV DI  Spin g /10K g 200

=1 + (= 0.5 +_/ 0.866) + 2(—0.5 —j 0.866) + 2(1)
+ 3(=0.5 + j0.866) + 3(—0.5 —j 0.866)
= 1.5 —j 0.868

For k=25

X8 = i x({n) g~/ 2BInG

o i

5
= %, x(n)e~/0RaR
A=l

=1+ !-J'Ilﬂ.'_ Ecdlﬁ-mﬂ‘_ E'ﬁﬂ-n " S.dﬂuﬂ-‘_a.dﬂqﬂ

=1 + (= 0.5 + F 0.8688) + 2(—0.5 + § 0.BEE) + 2(-1)
* 3{= 0.5 —j 0.B68) + 3(0.5 —j 0.865)
= =1.6 —j2. 698
Nik)= (12, -1.56 +j2.598, -1.56 + j0.866, 0, -1.6 —j 0.8586,
—1.56 —j 2.508]
The corresponding amplitude spectrum is given by
| Xik)| = {J:z = 12, (— L5 +(—2.588)7, J(— L6)? + (0.865)", 0,
J=1.5)% « (—0.886) , Ji— 15)® + (- 2.588)% 1
= (12, 2.989, 1.732, 0, 1.732, 2.980]
nnd the corresponding phase spectrum is given by
2598% . -1 [ﬂ.EEE
-1.5

_1[—15}“ -I[ }

-{o.-5.-5-°5 3

ZX(k) = {l‘..ln" Eﬂ].tu.n"[ }I‘..l:n" oy

Sesmned with CamBetrer



DIGITAL SIGNAL PROCESSING UNIT 2

Example Find the inverse DFT of X{k) = (1, 2, 3, 4].

Balution The inverse DFT iz defined as

=1 )
x(n) = 'fZ X (k) e/ M¥ pwp 128 .. N-1
k=D

a
Given N = 4, r(n]--‘l Y Xk el MN nnp,1,2,3

h=0
When n= 0
1 - Dok T
z0==% Xikel"
‘I-ﬂ
-11[1+2+3+ -l}-:%
Whenm=1

a
1 FETRIT T
W=l Y Xke
4 ng'n
- 'i'l (1+2e/%2 4 3e ™ + 4£/397)
-Ilu+2m+m—u+u—m
1 ==1_ ;1

When n =2

a
1 Jdmk
=(2) = 1 .E-' Xkl e

- :ll:‘.l-lrﬁu""' + Je I 4 -lt""}
. :1-:1+={-n+am+4t-m

=Ilt-21--u2
When n =3

a
AN = 2 Y X (k)2
N TT

= %{lq-ﬂt.;alﬂ + at,‘h + ‘Ejﬂlilj
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- %{1+2I-j]+3{-11+4ﬁ

- -—dygd
3 F2+2N=—geig

i 1 P 1 1 P |
.'ri.'nlu{i. 2 'FE' 2" 2+J‘2}

Propearties of thea DFT

The properties of the DFT are useful in the practical technigques for
processing signals. The various properties are given below.

Periodicity
If X(k) is an N-point DFT of x(n), then
xin + Ny=xin)forall n
Xk + N) = X(k) for all &
Linearity
If X (k) and Xo(k) are the N-point DFTs of x;{n) and xsln) reapectively,
and a and & are arbitrary constants either real or complex-valued, then

ax(n) + bxgln) a—EE"—r a X, (k) + bX k)

Time Reversal of a Sequence
If xtn) —LEL—s X (), then

x{=n(mod N)) = x(N=n) *_ﬂ&&; X (—k,(mod N = XIN = k)

Hence, when the N-point sequence in time is reversed, it is equivalent
to reversing the DFT values.

Circular Time Shift

Ir =(n) -%- X(k), then

x(n — I, (mod N)) '%’x“k""“'m

Shifting of the venes by [ units in the time-domain is equivalent to
multiplication of e V***'* in the frequency-domain.

Circular Frequency Shift
Ir x(n) D‘;T X(k), then
x(n)e J2nnN 1%‘ Xk —I, (mod N

Honce, when the wonce xin) is multiplied by the complex
exponential sequence e =N it is equivalent to circular shift of the
DFT by I wnits in the frequoncy domain,
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Complex Conjugate Property
If xim) 'I--Ej%r—l Xik), then
x"(n) «—2ET s X"(— k, (mod N)) = X" - k)
Circular Convelution
If x4 (n) hPﬁL- Xyk) and xyn) -—%’—-x,u}. then

= 4(n )z oln) w%rxlm X alh)

where x;{n ]@: gin) denotes the circular convolution of the sequence
xyln) and xsin) defined as

M=1
xgln)= Zr, (m)xgin — m, (modN))

m=0

N=1
= 2. x3(m)x,(n —m, (modN))

Multiplication of Two Sequences
Ir zyn) B X, (k) and  x(n) —EET—X,k), then

23 x(n) 2T L X (@ 5 (k)

Parzeval's Theorem
For complex-valued sequences x(n) and y{nl,

ir x(n) -—Eﬁr—-xm and y(n) -—EriL- Yik), then

N1 . p M=t .
2. x(n)y (n) = > XY (k)

=il T""l-n
If ¥ (n) = x{n), then the above equation reduces to
N-1 M=
Elﬂhlﬂi = = Eleﬁﬂ:
=i N =0

This exprossion relates the encrgy in the finito duration sequence
x(n) to the power in the frequency components X{k).

Methods of Circular Convolution:

Generally, there are two methods, which are adopted to perform circular convolution and
they are =
(1)Concentric circle method (2] Matrix multiplication method.
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Concentric Circle Method:

Let %;(n} and x;{n) be two given sequences. The steps followed for circular convolution
of ¥;(n] and x%;(n) are
# Take two concentric circles. Plot N samples of x;{n) on the circumference of the outer
circle (maintaining equal distance successive paints) in anti-clockwise direction.
« For plotting x;(n) ,plot N samples of %;{n) in clockwise direction on the inner circle,
starting sample placed at the same point as 0" sample of x;(n)
«  Multiply corresponding samples on the two circles and add them to get output.

= Rotate the inner circle anti-clockwise with one sample at a time.

Matrix Multiplication Method:

Matrix method represents the two given sequence x;(n) and xz{n) in matrix form.
« Dne of the given sequences is repeated via circular shift of one sample at a time to
form a N X N matrix.

« The other sequence is represented as column matrix

The multiplication of two matrices gives the result of circular convolution

SECTIONED CONVOLUTION:
Suppose, the input sequence x(n) of long duration is to be processed with a system having
finite duration impulse response by convolving the two sequences. Since, the linear filtering
performed via DFT involves operation on a fixed size data block, the input sequence is divided
into different fixed size data block before processing. The successive blacks are then
processed one at a time and the results are combined to produce the net result. As the
convalution is performed by dividing the leng input sequence into different fixed size
sections, it is called sectioned convolution. A long input sequence is segmented to fixed size
blocks, prior to FIR filter processing. Two methods are used to evaluate the discrete
convalution.
(1)Overlap-save method (2) Overlap-add method
QOverlap Save Method:
Overlap=save is the traditional name for an efficient way to evaluate the discrete convolution
between a very long signal x(n) and a finite impulse response FIR filter h{n).
1. Insert M - 1 zeros at the beginning of the input sequence x(n).
2. Break the padded input signal into overlapping blocks x,(n) of length N=L+ M - 1 where
the overlap
length is M -1,
3. Zero pad h{n) to be of length N=L+ M - 1.
4, Take N-DFT of h(n) to give H{k), k=0, 1,2,...cceoeo ... N-1.
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5. For each block m:

5.1 Take N-DFT of x,[(n) to give Xmilk), k=0, 1,2, mmmss M-1.
5.2 Multiply: Ymi{k) = Xm(k} . H(k], k=0, 1,2, N-1.
5.3 Take N-IDFT of ¥Ymi(k) to give y=[n] A =0, 1,2, ccammmm N-1.

5.4 Discard the first M - 1 points of each output block ym(n)
6. Form y{n) by appending the remaining (l.e., last) L samples of each block

f.'n.pl.ﬂ 5|5naJ blacks:
I L I
YT
TR
LI =(n)
[
;i:ul: 2(n)
averlap
| poim ] za(n)
Oruspus sigmal blocks: everlap
e yi{n) |
g 1w ]
Daurar
pe i FT__wm ]
M-1
proints
Overlap Add Method:

Given below are the steps to find out the discrete convolution using Overlap method:
1. Break the input signal x{n) into non-overlapping blocks x,(n) of length L.
2. Zero pad hin) to be of length N=L+ M- 1.

3. Take N-DFT of hin) to give H{k), k =0, 1,2, ccccinmas MN-1.
4. For each block m:
4.1 Zero pad x,{n) to be of length N =L+ M- 1.
4.2 Take N-DFT of x,[njto give X, (k], k=0, 1,2, cccccmaee N-1.
4.3 Multiply: ¥ (k) = Xpn{k).H{k), k= 0, 1,2, .cccniccannas N-1.
4.4 Take N-IDFT of ¥ (k) to give yoin), n =0, 1,2, ccovemcmece N-=1.

5. Form y(n) by overlapping the last M - 1 samples of y,(n) with the first M -1 samples of
Vesa(n) and adding the result.
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Input signal:
L L L
z1(n) N M -1
 Faros
z2(n) Nar—1
Rk ]
. T3l
Output signal: aln) N M -1
y1(n) |£
Add 7
M-S yz(n)
polnts Add /]
FY Y ya(n)
polnts

FAST FOURIER TRANSFORM (FFT)

The fast Fourier transform (FFT) is an algorithm that sfficiently
computes the discrete Fourier transform (DFT). The DFT of a sequence
{x(n)l of length IV is given by a complex-valued sequence [X(k))

=1
Xik) = E‘. x(n) e~ I2MMN gsks N -1,
mmi
Let Wy be the complex-valued phase factor, which is an N th root of
unity expressed by
WH = t—}ﬂ'lw

Henee X (&) becomes

N=1
Xik)= % x(n)W3", 0sksN-1

=i

Bimilarly, IDFT becomes

=1
=L S X @ W, 0snsN-1
N hmQ

From the above equations, it is evident that for each value of &, the
direct computation of X (k) involves N complex multiplications (4N real
multiplications) and N — 1 complex additions (4N — 2 real additions).
Hence, to compute all N values of DFT, N? complex multiplications and

N(N = 1) complex additions are required. The DFT and IDFT involve the
same type of computations.

10
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Decimation-in-Time (DIT) Algorithm
In this case, let us assume that x{n) represents a sequence of N values,
where N is an integer power of 2, that is, N = 25, The given sequence is
decimated (broken) into two % point sequences consisting of the even
numboered values of x(n) and the odd numbered values of x(r).

The N-point DFT of sequence x{a) is given by

M=
Xk)= 3 x(n)W5", 0sksN-1
PR
Breaking x{n) into its even and edd numbered values, we obtain

ey | MN-1
Xiky)= T xtmdWg'+ F xtmywph

A =0, A rven o0, ooadkd
Substituting n = 2Zr for 1 even and n = 2r + 1 for n odd , we have
(M FE =13 (NI = 13

Xikl= 3 x=(2r) W;" + 3 x(2r+ 1D W;‘?rl-lll

r=iQ i
g =10 INIT =1
= ¥ (2R WZ)Y*'+wy ¥ x(2r+ (W3t
o= r=0
H’tﬂ. wﬁ - [r—jlﬂh":]: - :_—_rlil.l'lﬂuf:u - whn
Therefore, Exq. ean be written as
1NFZ - 13 (Nr2=1
Xihy= T (2 Wil +Wh ¥ x(2r+ D WL,

=i =i
= GA)+ WA -H k), k=0, L...%-:

where Gi(k) and H(k) are the N/Z2-point DFTs of the even and odd
numbered sequences respectively. Here, each of the sums is computed

forO0s k= %r = 1 sinece & (k) and F (&) are considered periodic with period

M2,
Therefore,

G k) + Wi H (&), usks%-l

X k) = G(k_*_%]*_wgaﬁﬂiﬂ(k*..{:.} %ﬂhﬂ”-l

Using the symmetry property of Wi*M'% = Wy,

G k) + WE H (8, osksd 3
X(k) = N 2
Gk + IN/2)— Wit Hik+ NI/2), EsksN—l

11
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UKNIT 2

Figure shows the flow graph of the decimation-in-time
decomposition of an 8-point (N = B) DFT computation into two 4-peint
DFT computations. Here the branches entering a node are added to
produce the node variable. I no coelMcient ia indicated, it means that
the branch transmittance is equal to one. For other branches, the
transmittance is an integer power of Wy,

Then X(0) is obtained by multiplying H{(0) by W,? and adding the
product to G(0). X (1) is obtained by multiplying K (1) by W,/ and adding
that result to & (1). For X (4), H (4) is multiplied by W.f and the result is

ndded to &i4). But, since &ik) and H (k) are both periodic in & with
period 4, H(4) = H(0) and G(4) = G(0). Therefore, X(4) is obtained by

multiplying £ (0) by

W' and adding the result to G(0).
G{o)

x{0)
=2}

E(B) =—

F'3
?
-
-
w

N - .
T Pty v

P pa— _.__\\ N
-

(1) *—ri
[0 S

8] —

Flow Graph of the First Stoge Decimation-In-Time
FET Algorithm for N = 8

Fig.
=l ——
% Point
x[d) DOFT
x(2) N
n

Point
x{8) — DFT

x{1) ——

=[5}

=(3) —r
.— Podmt

=(7) DFT

o) rhﬂ!

Fig. Flaw Groph of the Second Stoge Decimation-in-time

FFT Algorithm for W = 8
12
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xqa)

S

X|2)

X1

a4y

"M "- - = » a7
Wy 1) w‘, W,

Fig. The Filgw-Garaph of the Decimation-in-time FFT Algosithm for W = 8

L = -
1L g_‘_géj-:’_ =

LN o

Example Given x(n) = {1, 2, 3, 4, 4, 3, 2, 1), find X{k) using DIT
FFT algorithm.

Ery
Solution We know that Wﬁ = e_ihﬂ*. Given N = 8.

1a
- o
Hence, Wrol=e A5 =1

13
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TR
¢ VB o coa mit —Jj sin m/4 = 0.707 —j 0.707

We=
13
~HF) - .
Wie 15 = cos /2 = f sin /2 = —f

=, pL ]
Wil=e A=) cos 3m/4 —j gin 3n/4 = — 0.707 —j 0.707

Using DIT FFT algorithm, we can find X(&k) from the given
sequence x{n) as shown in Fig.
Therefore, X (k)= {20, —5.828 — j 2.414, 0, 0.172 —j 0.414, D,
=0.172 +j0.414, 0, - 5.828 + j 2.414)

e[@] =1 o 'i'r__'l-._—ﬂ' —— -‘n—n ‘l::h o M - 2
__':\- '\-.._-I. "-\_H ._’_.-"'- e F .-_,-"
- L - L= — - r L H——‘— —_— i - - - -
u[d]=d . 4 W,"‘ \\ //' f K= - SEPA - 3418

e L
wiZ=3 = : = o i S, x"‘"r—-’f n=0
“::- '_,f’ ~3sj .\'\> l__.r
-m-?n_a_.;-"'* . E " oy —y —p— N3} = 0172 =0 A14
H'.l-'l - L]
L}
B[M]=F 0 - —dy——— - — l-l:_'l i Ndj=8
x[5=3 ,.._._..a-""ﬂ- ) -nh_u. HT5) = =0T o j0. 404

Wit
5 o Xiflj=@i

. ; i
silfed e — - -
T_);-r""v wa=t f '1—1-::":""// \\
i3 — I T

L R e e
ael =1 Hr:--j =k H':lll -
8707 - o TEF
Fig.

Given x(n) = 10, 1, 2, 3), find XUA) using DIT FFT

algorithm.

Solurion Given N=4

wl’ ""'{-IE.'J*
N=E

Wi=1and W} me?/*?u—j
Using DIT FFT algorithm, wo can find X&) from the given
sequence xi{n) as shown in Fig.
Therefore, X(k) = 6, -2 + j2, -2, =2 - j 2|

e o ;\\’:}j{ﬁ/: > = -
ez C—— .,_-r;’:.---.-_... = S N V M= oF e g
W=

=y O 3 * AFmed
N /E:
e T = — -‘:‘Eh‘“" » F L TR
whan = LA
Fig.

14
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Decimation-in-Frequency (DIF) Algorithms

The decimation-in-time FFT algorithm decomposes the DFT by
sequentially aplitting input samples x(a) in the time domnin into sets of
smaller and smaller subsequonces and thon forms & weighted
combinntion of the DFTs of these subsoquences. Another algorithm
called decimation-in-frequency FFT decomposes the DFT by recursively
aplitting the sequence elements X&) in the frequency domnin into sots
aof smaller and smaller subsequences. To derive the decimation-in-
frequency FFT algorithm for NV, a power of 2, the input sequence x(n) is
divided into the first half and the lnst hall of the pointa

' -
e e EJ]
E—-
orr ——
e = HI)
b e — & T}
ot
DFT I — 1]
. > [= e o=am

Fig. Flowr Giraph of the Second ltope of Decimatien-la-Fraquandy FFT for W = &

15
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Stage 1

Fig. Reduced Fiow Graph of Final Stage DIF FFT for N = 8

Fxarmm e Compute the DFTs of the sequence x{n) = cos ﬂ_

where N = 4, using DIF FFT algorithm. 2
Solution Given N = 4 and xin) = {1, 0, =1, 0]
k1
W= il
Wlsland W me™2u—j
Using DIF FFT algorithm, we can find X(k) from the given

sequence xin) ns shown in Fig.
Therefore, X (k) = [0, 2, 0, 2]

M0} =1 n m‘-ﬂl
X[ =0 x[2)mD
Xﬂ'--‘ll.. ,':1 O T . (1)mZ
Wle-
X(3)=0 /\_‘\E e SO > *(3) =2
=1 =1
Fig.
Givenx(n) = (1,2, 3, 4, 4, 3, 2, 1], find X(k) using DIF

FFT algorithm.
Solufion Given N = 8.

& 'J{‘ﬁ::l
We know that W =g -
Hence, Ws =1, Wi = 0.707 —j 0.707
wi=-j Wi =-0.707 - 0.707

1R
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DIGITAL SIGNAL PROCESSING UNIT 2

Using DIF FFT algorithm, we can find X{k) from the given
sequence x(n) as shown in Fig.
Hence, X(k) = (20, —5.B28 —j 2,414, 0, -0.172 =5 0.414, 0,
=0.172 + j0.414, 0, -5.828 + j 2.414]

A
ot ?‘“1‘:, LI

"i o o ses

Wi > ot

r-—!ur""r- H:—"-u—-!- -0 )-8

2t b3 Jhjwe B 241
205

jlau wh
AN — ::::o—-'—n M= 0T JOT

Wy -3sf
S S S S T

asan i lq‘l:l-— in—-:l'f- —u—“:ll—l'-' HTw =S 2418

=1 =XAF =21 =1 2EM LA =

Fig.

INVERSE FFT:

An FFT algorithm can be used to compute the IDFT if the output is
divided by N und the “twiddle factors are negative powers of Wy, i.e.
powers of W5 is used instead of powers of Wy. Therefore, an IFFT flow
graph can be obtained from an FFT flow graph by replacing all the x(n)
by X(k}), dividing the input data by NV, or dividing ench stage by 2 when
N is a power of 2, and changing the exponents of Wy to negative values.

M)

N AN
BNV A== i
Wi

a2 x6)
4 =1)
5 *{5)
x18) S - x(3)
= = .
M7 z w7 S w W (7
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DIGITAL SIGNAL PROCESSING UNIT 2

Use the 4-point inverse FFT and verify the DFT

results (6, -2 + j2, -2, -2 — j2| obtained in Example 6.18 for the given
input sequence (0, 1, 2, 3).

fam
Solution We know that W' = &T” Henee,
'“'“'Inn 1 and w_‘] - t-'im =
Using IFFT algorithm, we can find the input sequence x (r) from the
given DFT sequence X (k) as shown in Fig.

X0} = 8 L . x(0) =0
\/ 7o !lﬂ
-4 - Wa"
X1} m =2 42 B o * oF =) =2
— i
a8 W‘-l
A2} - =2 - zZ{1)}= 1
M) -2 -2 x(3) =23
- =4 -1 12 14
Fig.

Henkee, x(n)= [0, 1, 2, 3]

18
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DIGITAL SIGNAL PROCESSING UNIT3

SELECTION OF THE FILTER TYPE

The selection of the digital filter type ie., whether an [IR and FIR dgital filter to be
employed ; depends on the nature of the problem and on the specification of the desired freo-
quency response. For example, FIR filters are used in filtering problems where there is a
requirement for a linear phase characteristic within the passband of the Glker. When linear
phase s not a requirement, either an [TH ar FIR filter can be ased. H:wn'e'r most canes, the
order (N ) of an FIR filter is considerably higher than the erder (N equivalent ITR
filter meeting the same magnitude specificationa. It has been ahown moat practical
filter specifications, the ratio Np/N, is typleally of order of ten or more a8 a result, ITR
filter is waually com putaticnally mare efficient.

In this chapter we shall discusa technigoes for designing ITR filtera Yrom the
filters, with the restriction that the filtera be realizable and, of course, stablé. There are four
different methods which are available under IIR filter design, these are,

1. Impulse invarianece method

2. Bilinear transformation method

3. Matched z-transform Lechnigue

4, Approzimation of derivatives,

We ahall concentrate only the firsgt two methods.

TIR Filter Design by Impulse Invariance
A technique for digitizing an analog filter is called impulse invariance ;
The objective of this method is to develop an [TR filter transfer function whese ifnpulse response
is the sampled version of the impulse response of the analog filter, The main idea behind this

technique is to preserve the frequency response characteristies of the analog filter. In the
consequence of the result, the frequency response of the digital filter is an aliared version of

the frequency response n!'t.hu corresponding analog filter,

To develop the necessary design formula for impulse invariance method, consider a
causal and stable “analog™ transfer function H_(s). Its impulse response h_(¢) is given by in-
verse Laplace transform of H_(s), ie.,

B6) = L~ [H,(a)) ol 1)

In this method, we require that unit eample response hin) of the desired causal digital
transfer function Hiz) be given by the sampled version of h () sampled at uniform interval of
T seconds.

e, hin}=h (nT) n=0,1,2 ol 2)
where T is the sampling period

To investigate the mapping of points between z-plane and s-plane implied by the sam-
pling process, the z-transform is related to the Laplace transform of h_(f) as

Hiz) |, o = Zlhin)] = 2ih, (nT)) Wl )
2rk
) _.E_H (:u-?] A
where, Hiz)m E hin) 2™ .l B

g

Hiz)|, v = 3, hinde™™ . ol 8)

a=0
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where p=g+ il
Let us examine the transform z =¢®T of eqn. {  4) which can be written alternatively as,
: gmeT
For & =04 il

l-,“"ﬂﬂ -ﬂ-F-.
This then implies =T
@ w LT
where {1 is analog frequency and
@ is frequency in digital domain.

9.21.1 Development of the transformation

To explore the effect of the impulse invariance design method on the characteristics of
resultant filter, let us consider the system function of the analog filter in the partial fraction
form. Assume that the poles of the analog filter are distinet ie.,

Ay
- A
H.,(s) & 5= py

where [A,] are the co-efficients in the partial fraction expansion and

p, are the poles of the analog filter. The impulse response b (f) corresponding to
eqn. [ 7)has the form

hit)= i Aye™u (D) o B)

where u () is the continuous time step function.
If we sample A (1) periodically at f = aT, we have

m}-n_tnn-f,hw""u.hﬂ A 9
T
Now, the system function Hir) of the digital filter is thez-transform ofithis sequence and
is defined by
Hiz) m zlhin)].
Hiz) = iHn}:"‘ w10}
A=l
Using eqn.{ 10) the system function becomes
Hiz) = i ia. T g ol 11
YT
- i 2 (eMT 21 ol 12
bal k=0
1
Hizl= i.ﬂ.i,m «f 13)

[ L]

provided that |¢"7 | < 1, which is always satisfied if p, < 0, indicating that H_{s) is a stable
tranafer function. From the eqn.{ 13) we observe that the digital filter ham poles at

Seamned Wit Cam:
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Comparing the expression ( 13)and( 7), we see that the impulse intariance tranafor.
mation is accomplished by the mapping.

1 1
1 Ty il 14
=y 1-enTzt B
1 ) 1
a4 py . lu.-hi:'I '

Problem 1. For the analog transfer function H (s) = m ditermine the Hiz)
using impulse invarianee method,
2 2 2
Bol. e e G+2 "5+1 s+2
Using the impulse invariance transformation of eqn. { 14), the digifal filter transfer
fanction

HmeYE__ 2 2 2 T(1-T)e"!
Xl 1-e Tzt 1-eTzt - (l-e Tz ) (1-e W)’

Problem 2. Convert the analog filter with system function
B+ 2
H'm'f-ut..ll'ua.l
into the digital IIR filter by means of the impulse invariance method.
Sol. The partial-fraction expansion of H_(s) s given as
1 1
et 3 .. 2
i Py Y TS
Using eqn. { 14) the corresponding digital filter is then

O P

2 1-¢T2"  1-eg!

1 2-271 6T +27T)
2(1-e Tz ) (1= 271)

L1 -z e T +e*T)
2(l-e Tz ) (1-e " £71)

1=z coah T
H) = T e )
It should be noted that zero of Hiz) atz =~ 7 cosh T is not obtained by tranaforming the
tero at s = —7 into a zero Atz = £97,
Problem Apply the impulss invariant method o obiain the digital filler from the
second arder analog filter

F+a

His)= :
A el +b
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Bol. The analog filter transfeor function ia

e
Al PP T Y P—
Inverse Laplace transforming,
hy(e) = [r"’ :;-[bﬂ. ¢20,

Sampling this function produces
_ e cos(bnT,), n=z0.
ﬁ.l'.r.tT'] [ o A il ..
The z-transform of h(nT,), is equal to

Hiz)= ), ¢ coa (b,T,)z™"

Hiz) = E le™™ cos (6T,) =~']"
oo G

_ 1-e™7" cos (BT, )z~
(1-g @+ AT p-lj(] g™ o~ A -1y"

Hiz)

Problem Using impulse invariance method with T = 1 sec deterrhine

I
Hiz) if H(a) = m

1

Hisl= 50l
1
i) = LY (Hiz)) = L [,1 - = 1]

Baol. Given that

= L-I'

(&) (&

-L'I' &.
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TLet t=nT
KnT) = v2 €7 gin nTZ
T T=1sec.

hin) = J2 & gin ntJ3.

Hiz) = z[hin)) = +/2 n

Wil gin 12
e Y e
0.453:!
-] r g
1-074877 + 0243272

IIR FILTER DESIGN BY THE BILINEAR
TRANSFORMATION

The IIR filter design using (i) approximation of derivatives method and
(ii) the impulse invariant method are appropriate for the design of low-
pass filters and bandpass filters whose resonant frequencies are low.
These techniques are not suitable for high-pass or band-reject filters.
This limitation is overcome in the mapping technique called the
bilinear transformation. This transformation is a one-to-one
mapping from the s-domain to the z-domain. That is, the bilinear
transformation is a conformal mapping that transforms thej {I-axis into
the unit circle in the z-plane only once, thus avoiding aliasing of
frequency components. Also, the transformation of a stable analog filter-

results in a stable digital filter as all the poles in the left half of the
s-plane are mapped onto points inside the unit circle of the z-domain.
The bilinear transformation is obtained by using the trapezoidal

formula for numerical integration. Let the system function of the analog
filter be

His)= _b_ ( 2)
s+a
The differential equation describing the analog filter can be obtained
from Eq. 2 as shown below.
Y6 _ b
X(s) s+a
sY(s) + a¥(s) = bX(s)

Taking inverse Laplace transform,

dy(t)
dt

H(s)=

+ay(t) = bx(t) ( 3)
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Eq. 3 isintegrated between the limits (nT' - T) and nT
al (t)
| 9t 3 4 a _[ y(t)dt = b ]'xu]ldr 4
aT=-T de aT-T aT-T
The trapezoidal rule for numeric integration is given by
nT
In{:}dt=—[n(nTl+n(nT T 3
aT-T 2
ApplyingEq. 5 inEq.®  we get

yinT)-y(nT- T}+—T3~[nT}+£j[nT T)= Ex{nﬂa-Ex[uT T)

Taking z- trnnsl!hrm. the system function of t.he digital ﬁJter is,

Yiz) b
Hiz)= = 6
=X EI[I_I-]J”‘
TL1+2z7!
Comparing Eqs. 2 and ¢ we get,
;.a[l-f‘ =£(21] 7
Tl1+z"! Tliz+1

The general characteristic of the mapping z = ¢'T can be obtained by

substituting s = ¢ + j Q and expressing the complex variable z in the
polar form as z = re/* in Eq.7

" E_[I-IJEE rel® -1
Tlz+1) Tlre!™+1

=3k

i 2rsin o ]
1+r2+2rmam 1+r® +2rcos
Therefore,

rf-1 ] 3
1+r® +2rcos @
[ 2r sin @ ]

=2
T
=2
T 1+r +2rcos w
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From Eq. 8 , it can be noted thatifr<l,thenc<0,andifr>1,
then o > 0. Thus, the left-half of the s-plane maps onto the points inside
the unit circle in the z-plane and the transformation results in a stable
digital system. Consider Eq. ©  for unity magnitude (r = 1), o is zero.

In this case,
2 gsin
==
T(I+mum)
_ g( 2sin w/2 cos /2 ]
" T | cos? /2 +sin? /2 + cos® w/2 - sin? w/2
2 w
Q= — — 10
7%
or equivalently,
= 2tan-! 8T 11

2

Equatiun” gives the relationship between the frequencies in the
two domains and this is shown in Fig. It can be noted that the entire
range in ] is mapped only once into the range — x < w < n . However, as
seen in Fig.  , the mapping is non-linear and the lower frequencies in
analog domain are expanded in the digital domain, whereas the higher
frequencies are compressed. This is due to the non-linearity of the arc
tangent function and usually called as frequency warping.

The warping effect can be eliminated by prewarping the analog filter. The effect
of non-linear compression at high frequemcies can be compensated by
prewarping. When the desired magnitude response is piece-wise constant over
frequency, this compression can be compensated by introducing a suitable
prescaling or prewarping the critical frequencies by using the formula,

ool
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Fig. Relationship Between w ond £} as Given in Eq. 11
Problem Conuert the analog filter with system function.

w+0.1 . .. oy
H'r-}'{':-rn.ﬂ’ e into a digital IR filter by means of bilinsar tradsformation. Reso-
nant frequency of a digital filter is given ag w = %
Sol. (i) We first note that the analog filter H_(#) has a resonant frequiency.
0,=J16 =4.
(i) Let us find T n.%m%
X
-‘-E HI‘I;
1
T-ﬂl
2(1-21 1-g71
(iii) Now map 8= T[1+:"]-*[1+:"]

Dy substituting values of s into His), we have,

Hiz) = H_{-‘.IL“[L._;;]
lag”

4
[rrr .

(e

Hiz) =
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_ 0128+ 0.008:°! - 0.122:71 ) 0.128 + 0.0082~" - 0.122:"1
14 0.0006z~" + 0975277 1+ 0975z
- [:+IJ_{:-IJ-.EE]
(z - 0.987¢ %) (1 - 0.987¢/7)
This filter has n pole P, ;= 0.8 2¢**7 and zeros at 2, , = - 1, 0.85,
Problem A first order Butterworth low pass transfer function with a 3dB cut off
frequency at 0, is given by

Hjﬂ-fﬁ+
_ Design a single pole ow pass with 3B bandividth o 0.2 % uing the bilinar transfor
Sol. 0= mtan Y,
Given that o, =0.2%
q-:m%-%mm:-g,
The analog filter has a system function,
ﬂ,m--—“*— %
T
Now ) =B, 3f1ort) 2[1_“‘“T+E
Tl1+2 T

His)m 0B85(1+ 1Y) n.-um"*l;
2-2:7 4085 (1-0509:7)
The frequency response of the digital filter is

Thusatwe 0, H{0)= 1and st 0= 0.2 %,
| Hi0.2 @) | = 0.707, which is a desired responsa.

Problem  Obtain His) from H,(s) when T = 1 sec and H (1) m 0.

&
g+ e’ 42+

Sol. Given that, H,(s) =

21-27
Put &= 57,7 in H, (s) to get Hiz).

™
[2(=2) [[ o) a(m)

9
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DIGITAL SIGNAL PROCESSING UNIT3

- Bl1-z"1p°
[2(1-27)+ T+ 27| [401- 2707 + 2P (1= ML 42 THL4 277
But T = 1 see.
B1-z""
Ty e
-‘ =
Hiz) = 267" -1

(¥ =2V s 23007 -0)"
Problem Design a digital Butterworth filter satisfying the constraints

0.7075 | He™ | $1 for 0% ui%
| Hie*) | £0.2 for %‘-Sn}::.
with T = I sec using The bilinear transformalion
Bol. Biliopear transformation
1 3x
il = e i - G
The analog frequency ratio is
z @, In
...:_'L_L_:-! “ -J—‘ IE"I‘
. —r —
F Thﬂ 2 “n-l
The order of the filter,
mh‘%.
lqﬂ
r
From the given data L = 4898, g= 1],
l_ui-i.mﬂ-_
Ba, thlh" 1.803,
Rounding N to nearest higher value we got N = 2.
0
We know H,-mﬁr-ﬂ, (v eml)
-%mﬂzt-am':--ﬂuﬁm
The transfer function of second arder normalised Butterworth niter is,
i
H{'}'.r‘+ +1°

H,(#) for O = 2 rad/sec can be obtained by substituting
& = &2 in His)
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1 4
i B )T e e+ 1+ +2828a+ 4"
By using bilinear transformation Hiz) can be obtained as
Hiz)= ml”._%{ﬂ:_]
Leg™ )"

4
Thes e Y T YY)

. 41+ :"':I'_ _
M1-21 + 2828 (1-2" 1)+ 4{1+ 271

_ 0.2920(14+ 27"
1+0171627
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